当前位置:首页 » 存储配置 » 海量数据存储职位

海量数据存储职位

发布时间: 2022-06-03 16:22:59

Ⅰ 大数据这个方向的入门职业有哪些

当下,大数据方面的就业主要有三大方向:一是数据分析类大数据人才,二是系统研发类大数据人才,三是应用开发类大数据人才。基础岗位分别是大数据系统研发工程师、大数据应用开发工程师、大数据分析师。对于求职者来说,大数据只是所从事事业的一个方向,而职业岗位则是决定做什么事。大数据从业者/求职者可以根据自身所学技术及兴趣特征,选择一个适合自己的大数据相关岗位。

大数据就业前景:

在就业“钱景”方面,各大互联网公司都在囤积大数据处理人才,从业人员的薪资待遇也很不错。以基本的Hadoop开发工程师为例,入门月薪已经达到了8K以上,工作1年月薪可达到12K以上,资深的hadoop人才年薪可达到30万—50万。

大数据开发工程师
数据仓库开发、实时计算开发、大数据平台开发一般都会被称作大数据开发,其实这是3个岗位,各自要求也不尽相同。

大数据开发工程师
数据仓库开发、实时计算开发、大数据平台开发一般都会被称作大数据开发,其实这是3个岗位,各自要求也不尽相同。

大数据分析师
基于各种分析手段,利用大数据技术对大数据进行科学分析、挖掘、展现并用于决策支持。

数据挖掘工程师
数据挖掘工程师,也可以叫做“数据挖掘专家”。数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术。

算法工程师
数据挖掘、互联网搜索算法这些体现大数据发展方向的算法,在近几年越来越流行,而且算法工程师也逐渐朝向人工智能的方向发展。

数据安全研究
数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。

想要了解更多关于大数据这个方向的入门职业的信息,可以到CDA认证机构咨询一下,CDA行业标准由国际范围数据领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了标准的公立性、权威性、前沿性。通过CDA认证考试者可获得CDA中英文认证证书。

Ⅱ 大数据时代十大热门IT岗位

大数据时代十大热门IT岗位

大数据时代十大热门IT岗位 ,新的想法诞生新的技术,从而造出许多新词,云计算、大数据、BYOD、社交媒体、3D打印机、物联网……在互联网时代,各种新词层出不穷,令人应接不暇。这些新的技术、新兴应用和对应的IT发展趋势,使得IT人必须了解甚至掌握最新的IT技能。另一方面,云计算和大数据乃至其他助推各个行业发展的IT基础设施的新一轮部署与运维,都将带来更多的IT职位和相关技能技术的要求。
毫无疑问,这些新趋势的到来,会诞生一批新的工作岗位,比如数据挖掘专家、移动应用开发和测试、算法工程师,商业智能分析师等,同时,也会强化原有岗位的新生命力,比如网络工程师、系统架构师、咨询顾问、数据库管理与开发等等。下面分别为大家介绍着十大IT技能所体现的工作岗位:
一、算法工程师
何万青博士曾经介绍把一件事做快做好的三种方法,其中就提到过“提高流水线效率、更好的算法和更短的代码关键路径。”可以看出算法在系统效率中的重要地位。算法是让机器按照人类设想的方式去解决问题,算法很大程度上取决于问题类型和工程师对机器编程的理解,其效率的高低与算法息息相关。
在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。在大数据时代,算法的功能和作用得到进一步凸显。比如针对公司搜索业务,开发搜索相关性算法、排序算法。对公司海量用户行为数据和用户意图,设计数据挖掘算法。
算法工程师,根据研究领域来分主要有音频/视频算法处理、图像技术方面的二维信息算法处理和通信物理层、雷达信号处理、生物医学信号处理等领域的一维信息算法处理。另外数据挖掘、互联网搜索算法这些体现大数据发展方向的算法,在近几年越来越流行,而且算法工程师也逐渐朝向人工智能的方向发展。
二、商业智能分析师
算法工程师延伸出来的商业智能,尤其是在大数据领域变得更加火热。IT职业与咨询服务公司Bluewolf曾经发布报告指出,IT职位需求增长最快的是移动、数据、云服务和面向用户的技术人员,其中具体的职位则包括有商业智能分析师一项。
商业智能分析师往往需要精通数据库知识和统计分析的能力,能够使用商业智能工具,识别或监控现有的和潜在的客户。收集商业情报数据,提供行业报告,分析技术的发展趋势,确定市场未来的产品开发策略或改进现有产品的销售。
商业智能和逻辑分析技能在大数据时代显得特别重要,拥有商业知识以及强大的数据和数学分析背景的IT人才,在将来的IT职场上更能获得大型企业的青睐。不过这些技能并不是一般人都能掌握的,一些公司目前正在招聘统计学家并教授他们有关技术和商业的知识。
三、数据挖掘工程师
数据挖掘工程师,也可以叫做“数据挖掘专家”。数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。
数据挖掘专家或者说数据挖掘工程师掌握的技能,能够为其快速创造财富。当年亚马逊的首位数据挖掘工程师大卫·赛林格(David Selinger)创办的数据挖掘公司,将类似于亚马逊的产品推荐引擎系统销售给在线零售和广告销售商,而这种产品推荐引擎系统,也成为亚马逊有史以来最赚钱的工具。数据挖掘的价值由此可见一斑。
四、咨询顾问(专家)
任何业务部门和任何行业企业,都有IT系统在背后默默无闻地支撑着。在云计算大数据时代,业务面临的挑战和机遇也会给IT系统带来更多要求。在这种情况下,IT系统的规划部署和运维,都要有更为精通的专业人士才能胜任,并满足面向未来大数据分析、云计算服务应用的需要。
纽约蒙特法沃医疗中心(montefioremedical center)的副主席杰克-沃夫(JackWolf)曾经表示,他寻求不仅会建立和使用系统而且还会给予其他员工技术支持的新员工,他说:"新的系统意味着你必须有更多的咨询台来处理更多的咨询量。"当然,这里体现的主要是某个系统的技术支持的功能,但管中规豹我们不难发现,无论是部署初期的物料采购还是运维过程中的金玉良言,都凸显出这种技术咨询顾问的重要性。
五、网络工程师
网络工程师可以说是一个“绿色长青”的职业,网络技术一直以来就处于急需之中,美国人力资源公司罗勃海佛国际(Robert Half International)第三季度IT招聘指数和技能报告指出,网络管理占总需求技能排名中的第二位。对于云计算时代来说,网络在云资源池中(计算、存储、网络)更是扮演着更为重要的作用。
另一方面, IPv6 标准、物联网、移动互联等蓬勃发展,使得对于网络工程师尤其是新型网络工程师(移动、IPv6、云计算方向)的人才和技能要求也越来越多。网络工程师也因此而可以细分成多个发展方向,相应的技能要求其侧重也有所不同。比如网络安全、网络存储、架构设计、移动网络等等。
六、移动应用开发工程师
移动应用开发,会随着移动互联网时代的到来变得更受追捧。截至2012年底我国已经有10亿手机用户,移动智能终端用户超过4亿,在移动支付、移动购物、移动旅游、移动社交等方面涌现了大量的移动互联网游戏、应用和创业公司。
移动平台智能系统较多,但真正有影响力的也不外乎iOS、Android、WP、Blackberry等。大量原来PC和互联网上的信息化应用、互联网应用均已出现在手机平台上,一些前所未见的新奇应用也开始出现,并日渐增多。
移动应用开发,由于存有多个平台系统,因此不同的平台开发者其所面临的机遇和挑战也不尽相同。一个很明显的例子就是,当初由Google公司和开放手机联盟领导及开发的基于Linux的安卓系统,在开源之后就给广大开发者(商)带来巨大商机,而坚定选择iOS平台的的开发工程师,也通过苹果生态系统的不断扩建和智能设备的高市场占有,使得较早的一批开发者都赚得盆满钵满。不过在国内由于用户习惯、产业环境和版权保护的问题,移动应用开发者并没有因此而获得相应的收益。
七、软件工程设计师
近年IT业界逐渐涌现出一股软件定义网络(SDN)、软件定义数据中心、软件定义存储(SDS)和软件定义服务器(MoonShot)等浪潮,大有软件定义未来一切IT基础设施的趋势。
PaaS、SaaS、数据挖掘和分析、数据管理和监控、虚拟化、应用开发等等,都是软件工程师大展身手的好舞台。相应的,这些技术领域也对软件工程师的要求会更高,尤其是虚拟化和面向BYOD、云计算、大数据等应用的开发和管理,都需要有更高深的技术支撑。
和算法工程师有点类似的地方在于,软件工程师也需要注重设计模式的使用,一位优秀的工程师通常能识别并利用模式,而不是受制于模式。工程师不应让系统去适应某种模式,而是需要发现在系统中使用模式的时机。
八、数据库开发和管理
数据库开发和管理在大数据时代显得尤为重要,相关的数据库管理、运维和开发技术,将成为广大BI、大型企业和咨询分析机构特别看重的技能体现。代表着更多类型(尤其是非结构化类型)的海量数据的涌现,要求我们实时采集、分析、传输这些数据集,在对基础设施提出严峻挑战的同时,也特别强调了数据库开发和管理人员的挑战。
比如分布式的、面向海量数据管理的数据库系统之一NoSQL,就是面向大数据领域的非关系型数据库的流行平台,高可用、大吞吐、低延迟、数据安全性高等应用特点成为了很多企业的看重的特点,并希望有足够多的优秀IT开发人员深度开发NoSQL系统,解决对存储的扩容、宕机时长、平滑扩容、故障自动切换等问题的困恼。
另外,更为知名的Hadoop分布式数据库HBase的数据管理,需要借助HRegion、HMaster、HClient组成的体系结构从整体上管理数据。这些也都需要有对Hadoop深刻理解和业务的精通才能胜任。而除此以外的大数据的存储管理、内存计算、包括基于这些应用上的平台开发等等,也得会越来越受市场欢迎。
九、系统架构师
去年三星首席系统架构师吉姆·莫加德(Jim Mergard)跳槽至苹果,属于近期比较大的系统架构师人事变动,这种变动也说明了当今对于系统架构师的高度重视和认可。
众所周知,云计算和大数据的出现,使得传统的数据中心基础设施难以胜任;另一方面,日益激烈的市场竞争和移动互联等商机的出现,势必会给企业业务带来深刻变革。这种变革和IT架构转型,都会牵扯到IT系统架构这个核心问题。相比之前介绍的那些IT技能和所对应的岗位,系统架构师的规划部署能力显得尤为重要,它牵扯的是整个面而不是某个领域某个点的痛点。
十、系统安全师
同样的,网络、计算、存储还是系统架构,也都需要关注安全问题,而安全在现在的云计算环境下,个人隐私和企业敏感数据的保护也不断被强化。
在当前很多企业都收缩IT安全预算开支后,还不断面临着增强的合规要求等问题。企业们都在考虑是否应当将某些IT运营交给云端服务提供商处理。实际上,每个人都深感压力,预算不够地情况下还要尽力防护数据地安全,特别是中小型企业,这也就意味着企业需要将部分IT运转外包给第三方以减少资金和人力 方面地投资。
即使不采用外包的形式,无论个人还是企业都会更加注重安全,因为“安全”本身是没有行业限制和划分的,尤其是企业在构建云计算环境、提交或者收集海量数据进行处理分析、存储和传输等等一系列环节,都会面临新的挑战。这种挑战势必会需要有更多更专业的技术人才帮助解决这些问题。相比传统来说,系统安全师将更多的会结合具体的业务展开,而根植于系统平台和底层基础设施的系统安全,则更多的会出现在运营

Ⅲ 大数据可以从事哪些职位,大数据就业方向有哪些

这是一门实践性很强的专业,靠在学校里是没有什么前途的,现在电子行业的发展很快,你学得只是个基础,可能给你个简单的电子元器件,你都不知道它是哪一类的?给你电感你都可能以为是电阻,或电容什么的呢?因此你要做好准备,重点掌握以下的部分:
1.专业理论知识要扎实,不需要太深奥,会分析就可以,或者知道怎么查资料,特别是网上查资料。
2.专业英语要好一些,或者你的英语一定要棒一些。
3.去生产电子产品的公司工作,如果你会电子线路设计的话,可以从事绘图设计工作;也可以从事电子原材料采购工作,品质保证,品质检验工作,产品维修工作,产品测试工作;当然,如果你软件编程,计算机知识学得很好的话,可以从事软件测试工作前途更大一些,记得平时要多记一些专业术语,行业术语,对你尽快了解,尽快融入电子行业很有帮助。

Ⅳ 大数据行业就业方向有哪些大数据技术就业岗位有哪些

大数据行业就业方向和职业
:三大方向 ,十大职位。大数据主要的三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。
十大职位:一、ETL研发;二、Hadoop开发;三、可视化(前端展现)工具开发;四、信息架构开发;五、数据仓库研究;六、OLAP开发;七、数据科学研究;八、数据预测(数据挖掘)分析;九、企业数据管理;十、数据安全研究。

Ⅳ 大数据有哪些职位

1、首席数据官(CDO)

首席数据官的工作内容非常多,职责也很复杂,他们负责公司的数据框架搭建、数据管理、数据安全保证、商务智能管理、数据洞察和高级分析。因此,首席数据师必须个人能力出众,同时还需要具备足够的领导力和远见,找准公司发展目标,协调应变管理过程。

2、营销分析师/客户关系管理分析师

客户忠诚度项目、网络分析和物联网技术积攒了大量的用户数据,很多先进公司已经在使用相关策略来支持公司的发展计划。尤其是市场部门能够运用这些数据进行更有针对性的营销。营销分析师能够发挥他们在Excel和SQL等数据分析工具方面的专业特长,对客户进行细分,确保数字化营销能够到达目标客户群体。

3、数据工程师

随着Hadoop和非结构化数据仓库的流行,所有分析功能的第一要务就是要得到正确的数据。高水平的工程师需要掌握数据管理技能,熟悉提取转换加载过程,很多公司都急需这样的人才。事实上,很多首席数据官甚至认为,数据工程师才是大数据相关行业中最重要的职位。

4、商务智能开发工程师

商务智能开发工程师的最基本职能,是管理结构数据从数据库分配至终端用户的过程。商务智能(BI)曾经只是商务金融的基础,现在已经独立出来,成为了单独的部门,很多商务智能团队正在搭建自服务指示板,这样运营经理就能快速且有效地获取高性能数据,评价公司运营情况。

5、数据可视化

随着指示板和可视化工具的增多,商务智能“前端”研发工程师需要更熟练掌握Tableau、QlikView/QlikSense、SiSense和Looker。能够使用d3.js在网络浏览器中制作数据可视化的研发工程师也越来越受到公司欢迎。很多大公司开出的年薪已经超过了7万5千英镑,平均日薪500多英镑。

6、大数据工程师

正如上文提到过的,数据工程师的工作是负责管理公司的数据,包括数据的收集,存储、处理和分析。大数据工程师需要能够搭建并维护大型异构数据框架,这些数据通常是在MongoDB等NoSQL数据库中。很多公司采用Hadoop框架和很多Hadoop次级软件包,如Hive(数据软件),Pig(数据流语言)和Spark(多编程模型)。

Ⅵ 大数据都有哪些就业方向

很多大学生不想毕业即失业,看中了大数据的前景。都想报考大数据来进行提升自己,而很多学员对于其就业方向不是很了解。1 2 5在职研究生先来给大家分析一下大数据的就业方向,具体如下:

3、数据挖掘工程师

做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,基本的比如线性代数、高等代数、凸优化、概率论等。

Ⅶ 大数据行业有哪些工作机会,招聘的岗位技能有哪些

大数据主要有以下职位: 1)数据分析师Data analyst:指熟悉相关业务,熟练搭建数据分析框架,掌握和使用相关的分析常用工具和基本的分析方法,进行数据搜集、整理、分析,针对数据分析结论给管理销售运营提供指导意义的分析意见。

Ⅷ 大数据有哪些职业方向

1、大数据系统研发工程师

这一专业人才负责大数据系统研发,包括大规模非结构化数据业务模型构建、大数据存储、数据库构设、优化数据库构架、解决数据库中心设计等,同时,还要负责数据集群的日常运作和系统的监测等,这一类人才是任何构设大数据系统的机构都必须的。
2、大数据应用开发工程师

此类人才负责搭建大数据应用平台以及开发分析应用程序,他们必须熟悉工具或算法、编程、优化以及部署不同的MapRece,他们研发各种基于大数据技术的应用程序及行业解决方案。其中,ETL开发者是很抢手的人才,他们所做的是从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要,将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,末后加载到数据仓库,成为联机分析处理、数据挖掘的基础,为提取各类型的需要数据创造条件。

3、大数据分析师

此类人才主要从事数据挖掘工作,运用算法来解决和分析问题,让数据显露出真相,同时,他们还推动数据解决方案的不断更新。随着数据集规模不断增大,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapRece、Pig等的需求将持续增长,具备Hadoop框架经验的技术人员是很抢手的大数据人才,他们所从事的是热门的分析师工作。

Ⅸ 大数据行业的5个职位方向指南

大数据行业的5个职位方向指南
大数据已不再是新词,企业也越来越需要大数据高端人才。这给想要从事大数据方面工作的人员提供了难得的职业机遇。那么在大数据行业,都有什么职位可以选择呢?来看看大数据行业的5个职位方向指南吧!

ETL研发随着数据种类的不断增加,企业对数据整合专业人才的需求越来越旺盛。ETL开发者与不同的数据来源和组织打交道,从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要。ETL研发,主要负责将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。目前,ETL行业相对成熟,相关岗位的工作生命周期比较长,通常由内部员工和外包合同商之间通力完成。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL。 可视化(前端展现)工具开发海量数据的分析是个大挑战,而新型数据可视化工具如Spotifre,Qlikview、Tableau等可以直观高效地展示数据。可视化开发就是在可视开发工具提供的图形用户界面上,通过操作界面元素,由可视开发工具自动生成应用软件。还可轻松跨越多个资源和层次连接您的所有数据,经过时间考验,完全可扩展的,功能丰富全面的可视化组件库为开发人员提供了功能完整并且简单易用的组件集合,以用来构建极其丰富的用户界面。 信息架构开发 大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。
数据仓库研究
数据仓库是为企业所有级别的决策制定过程提供支持的所有类型数据的战略集合。它是单个数据存储,出于分析性报告和决策支持的目的而创建。为企业提供需要业务智能来指导业务流程改进和监视时间、成本、质量和控制。数据仓库的专家熟悉Teradata、Neteeza和Exadata等公司的大数据一体机。能够在这些一体机上完成数据集成、管理和性能优化等工作。
数据科学研究
这一职位过去也被称为数据架构研究,数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。因此,数据科学家首先应当具备优秀的沟通技能,能够同时将数据分析结果解释给IT部门和业务部门领导。总的来说,数据科学家是分析师、艺术家的合体,需要具备多种交叉科学和商业技能。
当然,除了上面五个方向,还有很多大数据行业的好职位,对大数据感兴趣的小伙伴们,赶快投入大数据的怀抱吧!

Ⅹ 大数据的就业岗位有哪些

1、大数据开发工程师
大数据开发工程师,很多公司都在招聘的热门技术人才,工资也是相对于其他方向更高一些。想要成为大数据开发工程师需要掌握计算机技术、hadoop 、spark、storm开发、hive 数据库、Linux 操作系统等知识,具备分布式存储、分布式计算框架等技术。
2、大数据分析师
大数据分析师是数据师的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
作为一名数据分析师、至少需要熟练SPSS、STATISTIC、Eviews、SAS、大数据魔镜等数据分析软件中的一门,至少能用Acess等进行数据库开发,至少掌握一门数学软件如matalab、mathmatics进行新模型的构建,至少掌握一门编程语言。总之,一个优秀的数据分析师,应该业务、管理、分析、工具、设计都不落下。
3、数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,基本的比如线性代数、高等代数、凸优化、概率论等。
经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapRece写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
4、大数据可视化工程师
随着大数据在人们工作及日常生活中的应用,大数据可视化也改变着人类的对信息的阅读和理解方式。从网络迁徙到谷歌流感趋势,再到阿里云推出县域经济可视化产品,大数据技术和大数据可视化都是幕后的英雄。
大数据可视化工程师岗位职责:1、 依据产品业务功能,设计符合需求的可视化方案。2、 依据可视化场景不同及性能要求,选择合适的可视化技术。3、 依据方案和技术选型制作可视化样例。4、 配合视觉设计人员完善可视化样例。5、 配合前端开发人员将样例组件化。

热点内容
服务器日志怎么分析 发布:2024-11-15 06:22:04 浏览:525
字体目录在哪个文件夹 发布:2024-11-15 06:20:28 浏览:181
php种子怎么打开 发布:2024-11-15 06:07:01 浏览:346
密码箱的密码忘记了如何开锁 发布:2024-11-15 06:04:41 浏览:955
安卓软件和苹果系统哪个好 发布:2024-11-15 05:48:32 浏览:284
pythonwhileelse 发布:2024-11-15 05:39:10 浏览:672
java文件流上传文件 发布:2024-11-15 05:24:02 浏览:147
linux安装so 发布:2024-11-15 05:22:29 浏览:582
九游版冒险王2适合安卓哪个版本 发布:2024-11-15 05:12:33 浏览:601
iphonexsmax怎么连接服务器 发布:2024-11-15 05:11:46 浏览:776