天融信存储口令的密码算法
㈠ 常用的对称密码算法有哪些
对称加密算法用来对敏感数据等信息进行加密,常用的算法包括:
DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。
3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。
AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高;
㈡ 天融信ngfw4000-uf默认密码是多少
默认用户名:superman
默认密码:talent
㈢ 口令密码
密码是由特有的规则、程序及一个可变换的秘钥,组成的秘密通信方式。密码的破译是一件极为困难的事情,掌握了敌人的密码就等于掌握了战争的主动权。你想干什么?你还没动作,我就知道你们干什么。
一、按应用技术或历史发展阶段划分
1、手工密码。以手工完成加密作业,或者以简单器具辅助操作的密码,叫做手工密码。第一次世界大战前主要是这种作业形式。
2、机械密码。以机械密码机或电动密码机来完成加解密作业的密码,叫做机械密码。这种密码从第一次世界大战出现到第二次世界大战中得到普遍应用。
3、电子机内乱密码。通过电子电路,以严格的程序进行逻辑运算,以少量制乱元素生产大量的加密乱数,因为其制乱是在加解密过程中完成的而不需预先制作,所以称为电子机内乱密码。从五十年代末期出现到七十年代广泛应用。
4、计算机密码。以计算机软件编程进行算法加密为特点,适用于计算机数据保护和网络通讯等广泛用途的密码。
二、按保密程度划分
1、理论上保密的密码。不管获取多少密文和有多大的计算能力,对明文始终不能得到惟一解的密码,叫作理论上保密的密码。也叫理论不可破的密码。如客观随机一次一密的密码就属于这种。
2、实际上保密的密码。在理论上可破,但在现有客观条件下,无法通过计算来确定惟一解的密码,叫作实际上保密的密码。
3、不保密的密码。在获取一定数量的密文后可以得到惟一解的密码,叫作不保密密码。如早期单表代替密码,后来的多表代替密码,以及明文加少量密钥等密码,现在都成为不保密的密码。
三、按密钥方式划分
1、对称式密码。收发双方使用相同密钥的密码,叫作对称式密码。传统的密码都属此类。
2、非对称式密码。收发双方使用不同密钥的密码,叫作非对称式密码。如现代密码中的公共密钥密码就属此类。
四、按明文形态划分
1、模拟型密码。用以加密模拟信息。如对动态范围之内,连续变化的语音信号加密的密码,叫作模拟式密码。
2、数字型密码。用于加密数字信息。对两个离散电平构成0、1二进制关系的电报信息加密的密码叫作数字型密码。
五、按编制原理划分
可分为移位、代替和置换三种以及它们的组合形式。古今中外的密码,不论其形态多么繁杂,变化多么巧妙,都是按照这三种基本原理编制出来的。移位、代替和置换这三种原理在密码编制和使用中相互结合,灵活应用。
㈣ 密码加密的算法有哪些
主要分为 对称加密算法 和 非对称加密算法两类
对称加密算法:使用单个密钥对数据进行加密或解密,其特点是计算量小,加密效率高.
代表 DES 算法
非对称加密算法:此算法均有两个密钥(公用密钥和私有密钥),只有二者搭配使用才能完成加密和解密的全过程.
代表 DSA算法, 数字签名算法(DSA) , MD5算法 , 安全散列算法(SHA)
㈤ 天融信ngfw4000,我在串口模式下是需要输入密码就能登录,web模式下需要用户名和密码
System authset show
命令行模式下可以显示系统用户信息
㈥ 公司有个天融信防火墙,可以密码给忘记了
给天融信打电话:400-610-5119 应该需要通过CON口去破解密码的。具体的步骤只有他们厂家才能做。
㈦ 密码算法的密码学
(1) 发送者和接收者
假设发送者想发送消息给接收者,且想安全地发送信息:她想确信偷听者不能阅读发送的消息。
(2) 消息和加密
消息被称为明文。用某种方法伪装消息以隐藏它的内容的过程称为加密,加了密的消息称为密文,而把密文转变为明文的过程称为解密。
明文用M(消息)或P(明文)表示,它可能是比特流(文本文件、位图、数字化的语音流或数字化的视频图像)。至于涉及到计算机,P是简单的二进制数据。明文可被传送或存储,无论在哪种情况,M指待加密的消息。
密文用C表示,它也是二进制数据,有时和M一样大,有时稍大(通过压缩和加密的结合,C有可能比P小些。然而,单单加密通常达不到这一点)。加密函数E作用于M得到密文C,用数学表示为:
E(M)=C.
相反地,解密函数D作用于C产生M
D(C)=M.
先加密后再解密消息,原始的明文将恢复出来,下面的等式必须成立:
D(E(M))=M
(3) 鉴别、完整性和抗抵赖
除了提供机密性外,密码学通常有其它的作用:.
(a) 鉴别
消息的接收者应该能够确认消息的来源;入侵者不可能伪装成他人。
(b) 完整性检验
消息的接收者应该能够验证在传送过程中消息没有被修改;入侵者不可能用假消息代替合法消息。
(c) 抗抵赖
发送者事后不可能虚假地否认他发送的消息。
(4) 算法和密钥
密码算法也叫密码,是用于加密和解密的数学函数。(通常情况下,有两个相关的函数:一个用作加密,另一个用作解密)
如果算法的保密性是基于保持算法的秘密,这种算法称为受限制的算法。受限制的算法具有历史意义,但按现在的标准,它们的保密性已远远不够。大的或经常变换的用户组织不能使用它们,因为每有一个用户离开这个组织,其它的用户就必须改换另外不同的算法。如果有人无意暴露了这个秘密,所有人都必须改变他们的算法。
但是,受限制的密码算法不可能进行质量控制或标准化。每个用户组织必须有他们自己的唯一算法。这样的组织不可能采用流行的硬件或软件产品。但窃听者却可以买到这些流行产品并学习算法,于是用户不得不自己编写算法并予以实现,如果这个组织中没有好的密码学家,那么他们就无法知道他们是否拥有安全的算法。
尽管有这些主要缺陷,受限制的算法对低密级的应用来说还是很流行的,用户或者没有认识到或者不在乎他们系统中内在的问题。
现代密码学用密钥解决了这个问题,密钥用K表示。K可以是很多数值里的任意值。密钥K的可能值的范围叫做密钥空间。加密和解密运算都使用这个密钥(即运算都依赖于密钥,并用K作为下标表示),这样,加/解密函数现在变成:
EK(M)=C
DK(C)=M.
这些函数具有下面的特性:
DK(EK(M))=M.
有些算法使用不同的加密密钥和解密密钥,也就是说加密密钥K1与相应的解密密钥K2不同,在这种情况下:
EK1(M)=C
DK2(C)=M
DK2 (EK1(M))=M
所有这些算法的安全性都基于密钥的安全性;而不是基于算法的细节的安全性。这就意味着算法可以公开,也可以被分析,可以大量生产使用算法的产品,即使偷听者知道你的算法也没有关系;如果他不知道你使用的具体密钥,他就不可能阅读你的消息。
密码系统由算法、以及所有可能的明文、密文和密钥组成的。
基于密钥的算法通常有两类:对称算法和公开密钥算法。下面将分别介绍: 对称算法有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,反过来也成立。在大多数对称算法中,加/解密密钥是相同的。这些算法也叫秘密密钥算法或单密钥算法,它要求发送者和接收者在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都能对消息进行加/解密。只要通信需要保密,密钥就必须保密。
对称算法的加密和解密表示为:
EK(M)=C
DK(C)=M
对称算法可分为两类。一次只对明文中的单个比特(有时对字节)运算的算法称为序列算法或序列密码。另一类算法是对明文的一组比特亚行运算,这些比特组称为分组,相应的算法称为分组算法或分组密码。现代计算机密码算法的典型分组长度为64比特——这个长度大到足以防止分析破译,但又小到足以方便使用(在计算机出现前,算法普遍地每次只对明文的一个字符运算,可认为是序列密码对字符序列的运算)。 公开密钥算法(也叫非对称算法)是这样设计的:用作加密的密钥不同于用作解密的密钥,而且解密密钥不能根据加密密钥计算出来(至少在合理假定的长时间内)。之所以叫做公开密钥算法,是因为加密密钥能够公开,即陌生者能用加密密钥加密信息,但只有用相应的解密密钥才能解密信息。在这些系统中,加密密钥叫做公开密钥(简称公钥),解密密钥叫做私人密钥(简称私钥)。私人密钥有时也叫秘密密钥。为了避免与对称算法混淆,此处不用秘密密钥这个名字。
用公开密钥K加密表示为
EK(M)=C.
虽然公开密钥和私人密钥是不同的,但用相应的私人密钥解密可表示为:
DK(C)=M
有时消息用私人密钥加密而用公开密钥解密,这用于数字签名(后面将详细介绍),尽管可能产生混淆,但这些运算可分别表示为:
EK(M)=C
DK(C)=M
当前的公开密码算法的速度,比起对称密码算法,要慢的多,这使得公开密码算法在大数据量的加密中应用有限。 单向散列函数 H(M) 作用于一个任意长度的消息 M,它返回一个固定长度的散列值 h,其中 h 的长度为 m 。
输入为任意长度且输出为固定长度的函数有很多种,但单向散列函数还有使其单向的其它特性:
(1) 给定 M ,很容易计算 h ;
(2) 给定 h ,根据 H(M) = h 计算 M 很难 ;
(3) 给定 M ,要找到另一个消息 M‘ 并满足 H(M) = H(M’) 很难。
在许多应用中,仅有单向性是不够的,还需要称之为“抗碰撞”的条件:
要找出两个随机的消息 M 和 M‘,使 H(M) = H(M’) 满足很难。
由于散列函数的这些特性,由于公开密码算法的计算速度往往很慢,所以,在一些密码协议中,它可以作为一个消息 M 的摘要,代替原始消息 M,让发送者为 H(M) 签名而不是对 M 签名 。
如 SHA 散列算法用于数字签名协议 DSA中。 提到数字签名就离不开公开密码系统和散列技术。
有几种公钥算法能用作数字签名。在一些算法中,例如RSA,公钥或者私钥都可用作加密。用你的私钥加密文件,你就拥有安全的数字签名。在其它情况下,如DSA,算法便区分开来了??数字签名算法不能用于加密。这种思想首先由Diffie和Hellman提出 。
基本协议是简单的 :
(1) A 用她的私钥对文件加密,从而对文件签名。
(2) A 将签名的文件传给B。
(3) B用A的公钥解密文件,从而验证签名。
这个协议中,只需要证明A的公钥的确是她的。如果B不能完成第(3)步,那么他知道签名是无效的。
这个协议也满足以下特征:
(1) 签名是可信的。当B用A的公钥验证信息时,他知道是由A签名的。
(2) 签名是不可伪造的。只有A知道她的私钥。
(3) 签名是不可重用的。签名是文件的函数,并且不可能转换成另外的文件。
(4) 被签名的文件是不可改变的。如果文件有任何改变,文件就不可能用A的公钥验证。
(5) 签名是不可抵赖的。B不用A的帮助就能验证A的签名。 加密技术是对信息进行编码和解码的技术,编码是把原来可读信息(又称明文)译成代码形式(又称密文),其逆过程就是解码(解密)。加密技术的要点是加密算法,加密算法可以分为对称加密、不对称加密和不可逆加密三类算法。
对称加密算法 对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有DES和IDEA等。美国国家标准局倡导的AES即将作为新标准取代DES。
不对称加密算法 不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。广泛应用的不对称加密算法有RSA算法和美国国家标准局提出的DSA。以不对称加密算法为基础的加密技术应用非常广泛。
不可逆加密算法 的特征是加密过程中不需要使用密钥,输入明文后由系统直接经过加密算法处理成密文,这种加密后的数据是无法被解密的,只有重新输入明文,并再次经过同样不可逆的加密算法处理,得到相同的加密密文并被系统重新识别后,才能真正解密。显然,在这类加密过程中,加密是自己,解密还得是自己,而所谓解密,实际上就是重新加一次密,所应用的“密码”也就是输入的明文。不可逆加密算法不存在密钥保管和分发问题,非常适合在分布式网络系统上使用,但因加密计算复杂,工作量相当繁重,通常只在数据量有限的情形下使用,如广泛应用在计算机系统中的口令加密,利用的就是不可逆加密算法。近年来,随着计算机系统性能的不断提高,不可逆加密的应用领域正在逐渐增大。在计算机网络中应用较多不可逆加密算法的有RSA公司发明的MD5算法和由美国国家标准局建议的不可逆加密标准SHS(Secure Hash Standard:安全杂乱信息标准)等。
㈧ 如何查看天融信防火墙 用户名 密码
1、首先打开Linux系统进入桌面,点击上方菜单栏处【系统】选项。