当前位置:首页 » 存储配置 » 共享块存储

共享块存储

发布时间: 2022-05-27 04:34:55

1. linux redhat6.3两台机器共用一块存储

可以使用NFS(网络文件系统)来实现。

一、NFS服务简介

NFS 是Network File System的缩写,即网络文件系统。一种使用于分散式文件系统的协定,由Sun公司开发,于1984年向外公布。功能是通过网络让不同的机器、不同的操作系统能够彼此分享个别的数据,让应用程序在客户端通过网络访问位于服务器磁盘中的数据,是在类Unix系统间实现磁盘文件共享的一种方法。

NFS 的基本原则是“容许不同的客户端及服务端通过一组RPC分享相同的文件系统”,它是独立于操作系统,容许不同硬件及操作系统的系统共同进行文件的分享。

NFS在文件传送或信息传送过程中依赖于RPC协议。RPC,远程过程调用 (Remote Procere Call) 是能使客户端执行其他系统中程序的一种机制。NFS本身是没有提供信息传输的协议和功能的,但NFS却能让我们通过网络进行资料的分享,这是因为NFS使用了一些其它的传输协议。而这些传输协议用到这个RPC功能的。可以说NFS本身就是使用RPC的一个程序。或者说NFS也是一个RPC SERVER。所以只要用到NFS的地方都要启动RPC服务,不论是NFS SERVER或者NFS CLIENT。这样SERVER和CLIENT才能通过RPC来实现PROGRAM PORT的对应。可以这么理解RPC和NFS的关系:NFS是一个文件系统,而RPC是负责负责信息的传输。
下面是5.6的步骤,6.3和这步骤差不多了。

二、系统环境

系统平台:CentOS release 5.6 (Final)

NFS Server IP:192.168.1.108

防火墙已关闭/iptables: Firewall is not running.

SELINUX=disabled

三、安装NFS服务

NFS的安装是非常简单的,只需要两个软件包即可,而且在通常情况下,是作为系统的默认包安装的。

nfs-utils-* :包括基本的NFS命令与监控程序
portmap-* :支持安全NFS RPC服务的连接
1、查看系统是否已安装NFS

系统默认已安装了nfs-utils portmap 两个软件包。

2、如果当前系统中没有安装NFS所需的软件包,需要手工进行安装。nfs-utils 和portmap 两个包的安装文件在系统光盘中都会有。

# mount /dev/cdrom /mnt/cdrom/
# cd /mnt/cdrom/CentOS/
# rpm -ivh portmap-4.0-65.2.2.1.i386.rpm
# rpm -ivh nfs-utils-1.0.9-50.el5.i386.rpm
# rpm -q nfs-utils portmap

四、NFS系统守护进程

nfsd:它是基本的NFS守护进程,主要功能是管理客户端是否能够登录服务器;
mountd:它是RPC安装守护进程,主要功能是管理NFS的文件系统。当客户端顺利通过nfsd登录NFS服务器后,在使用NFS服务所提供的文件前,还必须通过文件使用权限的验证。它会读取NFS的配置文件/etc/exports来对比客户端权限。
portmap:主要功能是进行端口映射工作。当客户端尝试连接并使用RPC服务器提供的服务(如NFS服务)时,portmap会将所管理的与服务对应的端口提供给客户端,从而使客户可以通过该端口向服务器请求服务。
五、NFS服务器的配置

NFS服务器的配置相对比较简单,只需要在相应的配置文件中进行设置,然后启动NFS服务器即可。

NFS的常用目录

/etc/exports NFS服务的主要配置文件
/usr/sbin/exportfs NFS服务的管理命令
/usr/sbin/showmount 客户端的查看命令
/var/lib/nfs/etab 记录NFS分享出来的目录的完整权限设定值
/var/lib/nfs/xtab 记录曾经登录过的客户端信息
NFS服务的配置文件为 /etc/exports,这个文件是NFS的主要配置文件,不过系统并没有默认值,所以这个文件不一定会存在,可能要使用vim手动建立,然后在文件里面写入配置内容。

/etc/exports文件内容格式:

<输出目录> [客户端1 选项(访问权限,用户映射,其他)] [客户端2 选项(访问权限,用户映射,其他)]
a. 输出目录:

输出目录是指NFS系统中需要共享给客户机使用的目录;

b. 客户端:

客户端是指网络中可以访问这个NFS输出目录的计算机

客户端常用的指定方式

指定ip地址的主机:192.168.0.200
指定子网中的所有主机:192.168.0.0/24 192.168.0.0/255.255.255.0
指定域名的主机:david.bsmart.cn
指定域中的所有主机:*.bsmart.cn
所有主机:*
c. 选项:

选项用来设置输出目录的访问权限、用户映射等。

NFS主要有3类选项:

访问权限选项

设置输出目录只读:ro
设置输出目录读写:rw
用户映射选项

all_squash:将远程访问的所有普通用户及所属组都映射为匿名用户或用户组(nfsnobody);
no_all_squash:与all_squash取反(默认设置);
root_squash:将root用户及所属组都映射为匿名用户或用户组(默认设置);
no_root_squash:与rootsquash取反;
anonuid=xxx:将远程访问的所有用户都映射为匿名用户,并指定该用户为本地用户(UID=xxx);
anongid=xxx:将远程访问的所有用户组都映射为匿名用户组账户,并指定该匿名用户组账户为本地用户组账户(GID=xxx);
其它选项

secure:限制客户端只能从小于1024的tcp/ip端口连接nfs服务器(默认设置);
insecure:允许客户端从大于1024的tcp/ip端口连接服务器;
sync:将数据同步写入内存缓冲区与磁盘中,效率低,但可以保证数据的一致性;
async:将数据先保存在内存缓冲区中,必要时才写入磁盘;
wdelay:检查是否有相关的写操作,如果有则将这些写操作一起执行,这样可以提高效率(默认设置);
no_wdelay:若有写操作则立即执行,应与sync配合使用;
subtree:若输出目录是一个子目录,则nfs服务器将检查其父目录的权限(默认设置);
no_subtree:即使输出目录是一个子目录,nfs服务器也不检查其父目录的权限,这样可以提高效率;
六、NFS服务器的启动与停止

在对exports文件进行了正确的配置后,就可以启动NFS服务器了。

1、启动NFS服务器

为了使NFS服务器能正常工作,需要启动portmap和nfs两个服务,并且portmap一定要先于nfs启动。

# service portmap start
# service nfs start

2、查询NFS服务器状态

# service portmap status
# service nfs status

3、停止NFS服务器

要停止NFS运行时,需要先停止nfs服务再停止portmap服务,对于系统中有其他服务(如NIS)需要使用时,不需要停止portmap服务

# service nfs stop
# service portmap stop
4、设置NFS服务器的自动启动状态

对于实际的应用系统,每次启动LINUX系统后都手工启动nfs服务器是不现实的,需要设置系统在指定的运行级别自动启动portmap和nfs服务。

# chkconfig --list portmap
# chkconfig --list nfs

设置portmap和nfs服务在系统运行级别3和5自动启动。

# chkconfig --level 35 portmap on
# chkconfig --level 35 nfs on

七、实例

1、将NFS Server 的/home/david/ 共享给192.168.1.0/24网段,权限读写。

服务器端文件详细如下:

# vi /etc/exports

/home/david 192.168.1.0/24(rw)
2、重启portmap 和nfs 服务

# service portmap restart
# service nfs restart
# exportfs

3、服务器端使用showmount命令查询NFS的共享状态

# showmount -e//默认查看自己共享的服务,前提是要DNS能解析自己,不然容易报错

# showmount -a//显示已经与客户端连接上的目录信息

4、客户端使用showmount命令查询NFS的共享状态

# showmount -e NFS服务器IP

5、客户端挂载NFS服务器中的共享目录

命令格式

# mount NFS服务器IP:共享目录 本地挂载点目录
# mount 192.168.1.108:/home/david/ /tmp/david/

# mount |grep nfs

挂载成功。

查看文件是否和服务器端一致。

6、NFS的共享权限和访问控制

现在我们在/tmp/david/ 里面建立一个文件,看看权限是什么

# touch 20130103

这里出现Permission denied,是因为NFS 服务器端共享的目录本身的写权限没有开放给其他用户,在服务器端打开该权限。

# chmod 777 -R /home/david/

再次在客户端/tmp/david/ 里面建立一个文件

我用root 用户建立的文件,变成了nfsnobody 用户。

NFS有很多默认的参数,打开/var/lib/nfs/etab 查看分享出来的/home/david/ 完整权限设定值。

# cat /var/lib/nfs/etab

默认就有sync,wdelay,hide 等等,no_root_squash 是让root保持权限,root_squash 是把root映射成nobody,no_all_squash 不让所有用户保持在挂载目录中的权限。所以,root建立的文件所有者是nfsnobody。

下面我们使用普通用户挂载、写入文件测试。

# su - david

$ cd /tmp/david/

$ touch 2013david

普通用户写入文件时就是自己的名字,这也就保证了服务器的安全性。
关于权限的分析

1. 客户端连接时候,对普通用户的检查

a. 如果明确设定了普通用户被压缩的身份,那么此时客户端用户的身份转换为指定用户;

b. 如果NFS server上面有同名用户,那么此时客户端登录账户的身份转换为NFS server上面的同名用户;

c. 如果没有明确指定,也没有同名用户,那么此时 用户身份被压缩成nfsnobody;

2. 客户端连接的时候,对root的检查

a. 如果设置no_root_squash,那么此时root用户的身份被压缩为NFS server上面的root;

b. 如果设置了all_squash、anonuid、anongid,此时root 身份被压缩为指定用户;

c. 如果没有明确指定,此时root用户被压缩为nfsnobody;

d. 如果同时指定no_root_squash与all_squash 用户将被压缩为 nfsnobody,如果设置了anonuid、anongid将被压缩到所指定的用户与组;

7、卸载已挂载的NFS共享目录

# umount /tmp/david/

八、启动自动挂载nfs文件系统

格式:

<server>:</remote/export> </local/directory> nfs < options> 0 0
# vi /etc/fstab

保存退出,重启系统。

查看/home/david 有没有自动挂载。

自动挂载成功。

九、相关命令

1、exportfs

如果我们在启动了NFS之后又修改了/etc/exports,是不是还要重新启动nfs呢?这个时候我们就可以用exportfs 命令来使改动立刻生效,该命令格式如下:

# exportfs [-aruv]

-a 全部挂载或卸载 /etc/exports中的内容
-r 重新读取/etc/exports 中的信息 ,并同步更新/etc/exports、/var/lib/nfs/xtab
-u 卸载单一目录(和-a一起使用为卸载所有/etc/exports文件中的目录)
-v 在export的时候,将详细的信息输出到屏幕上。

具体例子:
# exportfs -au 卸载所有共享目录
# exportfs -rv 重新共享所有目录并输出详细信息

2、nfsstat

查看NFS的运行状态,对于调整NFS的运行有很大帮助。

3、rpcinfo
查看rpc执行信息,可以用于检测rpc运行情况的工具,利用rpcinfo -p 可以查看出RPC开启的端口所提供的程序有哪些。

4、showmount

-a 显示已经于客户端连接上的目录信息
-e IP或者hostname 显示此IP地址分享出来的目录

5、netstat

可以查看出nfs服务开启的端口,其中nfs 开启的是2049,portmap 开启的是111,其余则是rpc开启的。

最后注意两点,虽然通过权限设置可以让普通用户访问,但是挂载的时候默认情况下只有root可以去挂载,普通用户可以执行sudo。

NFS server 关机的时候一点要确保NFS服务关闭,没有客户端处于连接状态!通过showmount -a 可以查看,如果有的话用kill killall pkill 来结束,(-9 强制结束)

2. windows的服务器和linux的服务器如何设置成共享同一块存储

这个问题的关键在于你linux的核心!~~~
简单点说就是你的linux是否支持windows分区的读写!~~~~

我的是FC8的系统~~~~
是跟我的XP装在一个电脑上的~~~~
在FC8下能够完全识别windows下的所有NTFS分区~~~
只是系统盘需要用ROOT的权限才能读!~~~~

明白我说的了吗?
只要你的内核支持,就可以在linux下访问windows的分区,
也就实现了你所说的了~~~~

不过需要提醒一下的是:
我看到过一份资料说在linux下写windows的NTFS分区是不安全的~~~
至于之中的原因!~~我给忘了~~~~!!!!!!

给你提供关键字:linux下如何访问windows分区
看看其中的信息对你有用不~~~

希望能够帮到你!~~~
嘿嘿~~~~

多看了一下你的补充内容!~~
感觉有毛病~~~
比如你说的sql
windows和linux的数据库系统都不一样~~~
一个是MSSQL一个是MYSQL~~~~
如果你在windows下装个mysql的话到也能实现你说的
访问同一存储空间的SQL~~~
可如果你想把mssql装到linux上的话~~~
请先问下windows同意不~~~
我估计不会同意~~~~呵呵~~~

3. autocad中如何快速创建共享块

文章对AutoCAD软件中的一些特性做了探讨,并研究了实际生产中块与属性的建立与应用的一些问题。

在现代化大规模生产当中,技术集成使设备日趋完美而又微型化,市场上的竞争又使时间更趋宝贵。这就迫使人们想方设法缩短产品的开发周期,以便创出更高的效益。AutoCAD软件正顺应了这一潮流,它从20世纪80年代初被开发出来以来,经过不断升级,如今已成为日趋成熟的当今世界上应用最为广泛的计算机辅助设计软件包之一。相对于手工绘图,它的速度之快、精度之高,令人惊叹;它所绘图形复杂的程度,编辑的手段,又给人们的手工绘图观念带来了一次大的革命。如何充分发挥它的作用,成为工程技术人员面临的一大技术应用性课题。本文旨在对AutoCAD软件中块的应用做些探讨。

一、块的意义

AutoCAD软件中,绘图速度快的体现之一是省去了重复出现的结构的画法,如零件图上粗糙度的标注、标题栏的画图与填写、减速机上的螺栓联接、电路板上重复出现的一些结构等。在这样一些结构的画图中,除了尺寸相同的结构可以用Copy命令来画外,其他尺寸不同的结构则完全可以用“块”来完成。

块是由多个图形对象组成的一个复杂集合。它的基本功能就是为了方便用户重复绘制相同图形,用户可以为所定义的块赋予一个名称,在同一文件中的不同地方方便地插入已定义好的块文件,并通过块上的基准点来确定块在图面上插入的位置。当块作为文件保存下来时,还可以在不同的文件中方便地插入。在插入块的同时可以对插入的块进行缩放和旋转操作,通过上述操作,就可以方便地反复使用同一个复杂图形。

在AutoCAD中,使用块还能给人们带来以下一些好处:

(一)便于创建图块库(BlockLibrary)

如果把绘图过程中经常使用的图形定义成块并保存在磁盘上,就形成一个图块库。当需要某个图块时,把它插入图中,即可把复杂的图形变成几个简单拼凑而成的图块,避免了大量的重复工作,大大提高了绘图的效率和质量。

(二)节省磁盘空间

在图中的每一个实体都有其特征参数,如图层、位置坐标、线型、颜色等。我们保存所绘制的图形,实质上也就是让AutoCAD将图中所有的实体特征参数存储在磁盘上。当使用Copy命令复制多个图形时,图中所有特征参数都被复制了,因此会占用很大的磁盘空间。而利用插入块功能则既能满足工程图纸的要求,又能减少存储空间。因为图块作为一个整体图形单元,每次插入时只需保存块的特征参数,而不需保存块中各个实体的特征参数。

(三)便于修改图形

在工程项目中经常会遇到修改图形的情况,当块作为外部引用插入时,修改一个早已定义好的图块,AutoCAD就会自动地更新图中已经插入的所有该图块。

(四)便于携带属性

在绘制某些图形时,除了需要反复使用某个图形外,还需要对图形进行文字说明,而且说明还会有变化,如零件的表面粗糙度值、形位公差数值等。AutoCAD提供了属性功能来满足这一需要,即属性是从属于块的文字信息,它是块的一个组成部分。对于这些需要对图形进行文字说明的块,我们可以把它做成属性块。

二、块的建立

能否准确地建立一个块,是考验一名技术人员能否正确使用块的标准。正确地建立块,可以加快人们利用计算机绘图的速度。在绘图时,必须要有前瞻性,要能预见什么样的结构会重复出现。对于重复出现的结构,我们应该首先建立好块。在块的建立过程中,比较直观、方便的方法是利用对话框建立块。

例如要建立图1(a)所示的块,我们可以进行以下操作:

1.用鼠标单击(不特殊注明时均为左击,下同)工具栏上的MakeBlock按钮,弹出对话框。

2.用键盘在对话框的BlockName栏中输入块名A。

3.单击对话框中的SelectObject按钮,此时对话框消失而返回到绘图界面。

4.单击并拖动鼠标,选中图1(a)所示图形后再右击鼠标予以确认,此时对话框再次出现。

5.单击对话框中SelectPoint按钮,对话框再次消失而返回到绘图界面。

6.选择图块插入点(也称图块的特征点)。此时可根据不同的图形选择一个有特殊意义的点,如圆的圆心、标题栏的右下角点等;图1(b)中选择1点作为插入点。确定插入点后,对话框再次弹出。

7.单击OK按钮。一个名为“A”的块即告建立完成。

以上介绍的是最简单也是最直观的一种块建立方法。实际上,我们还可以通过键盘输入命令(Block)来建立块,在此不再探讨。

我们利用工具栏中的InsertBlock工具或选择Insert下拉菜单中的Block选项,在图形中引用块。使用WBlock命令则可以将块作为一个单独的文件存储在磁盘上,以便在绘制其他图形时采用。

属性的定义可以在Draw菜单中选中Block级联菜单的DefineAttribute菜单项完成。

例如要将图1(a)所示的块设置为图2(a)所示的属性块,可按下面讨论的块在表面粗糙度标注中的应用来进行操作。

4. 电脑上什么是共享内存

共享内存指 (shared memory)在多处理器的计算机系统中,可以被不同中央处理器(CPU)访问的大容量内存。由于多个CPU需要快速访问存储器,这样就要对存储器进行缓存(Cache)。任何一个缓存的数据被更新后,由于其他处理器也可能要存取,共享内存就需要立即更新,否则不同的处理器可能用到不同的数据。共享内存是 Unix下的多进程之间的通信方法 ,这种方法通常用于一个程序的多进程间通信,实际上多个程序间也可以通过共享内存来传递信息。
注意事项
共享内存相比其他几种方式有着更方便的数据控制能力,数据在读写过程中会更透明。当成功导入一块共享内存后,它只是相当于一个字符串指针来指向一块内存,在当前进程下用户可以随意的访问。缺点是,数据写入进程或数据读出进程中,需要附加的数据结构控制。

5. 块存储、文件存储、对象存储这三者的本质差别是什么

一、概念及区别

针对不同的应用场景,选择的分布式存储方案也会不同,因此有了对象存储、块存储、文件系统存储。这三者的主要区别在于它们的存储接口:

1. 对象存储:

也就是通常意义的键值存储,其接口就是简单的GET,PUT,DEL和其他扩展,

2. 块存储:

这种接口通常以QEMU Driver或者Kernel Mole的方式存在,这种接口需要实现Linux的BlockDevice的接口或者QEMU提供的BlockDriver接口,如Sheepdog,AWS的EBS,青云的云硬盘和阿里云的盘古系统,还有Ceph的RBD(RBD是Ceph面向块存储的接口)

3. 文件存储:

通常意义是支持POSIX接口,它跟传统的文件系统如Ext4是一个类型的,但区别在于分布式存储提供了并行化的能力,如Ceph的CephFS(CephFS是Ceph面向文件存储的接口),但是有时候又会把GFS,HDFS这种非POSIX接口的类文件存储接口归入此类。

二、IO特点

按照这三种接口和其应用场景,很容易了解这三种类型的IO特点,括号里代表了它在非分布式情况下的对应:1. 对象存储(键值数据库):

接口简单,一个对象我们可以看成一个文件,只能全写全读,通常以大文件为主,要求足够的IO带宽。

2. 块存储(硬盘):

它的IO特点与传统的硬盘是一致的,一个硬盘应该是能面向通用需求的,即能应付大文件读写,也能处理好小文件读写。但是硬盘的特点是容量大,热点明显。因此块存储主要可以应付热点问题。另外,块存储要求的延迟是最低的。

3. 文件存储(文件系统):

支持文件存储的接口的系统设计跟传统本地文件系统如Ext4这种的特点和难点是一致的,它比块存储具有更丰富的接口,需要考虑目录、文件属性等支持,实现一个支持并行化的文件存储应该是最困难的。但像HDFS、GFS这种自己定义标准的系统,可以通过根据实现来定义接口,会容易一点。

因此,这三种接口分别以非分布式情况下的键值数据库、硬盘和文件系统的IO特点来对应即可。至于冷热、快慢、大小文件而言更接近于业务。但是因为存储系统是通用化实现,通常来说,需要尽量满足各种需求,而接口定义已经一定意义上就砍去了一些需求,如对象存储会以冷存储更多,大文件为主。

6. 对象存储、文件存储和块存储有什么区别

对象存储、文件存储和块存储区别为:存储设备不同、特点不同、缺点不同。

一、存储设备不同

1、对象存储:对象存储的对应存储设备为swift,键值存储。

2、文件存储:文件存储的对应存储设备为FTP、NFS服务器。

3、块存储:块存储的对应存储设备为cinder,硬盘。

二、特点不同

1、对象存储:对象存储的特点是具备块存储的高速以及文件存储的共享等特性。

2、文件存储:文件存储的特点是一个大文件夹,大家都可以获取文件。

3、块存储:块存储的特点是分区、格式化后,可以使用,与平常主机内置硬盘的方式完全无异。

三、缺点不同

1、对象存储:对象存储的缺点是不兼容多种模式并行。

2、文件存储:文件存储的缺点是传输速率低。

3、块存储:块存储的缺点是不能共享数据。

7. 关于VMware vsphere ESXi 6.0如何共用同一块存储器

建议虚拟出一台Windows系统,做iscsi存储就可以两个esxi主机共享了。

8. 对象存储、文件存储和块存储的区别有哪些

对象存储、文件存储和块存储的区别如下:

1、速度不同

块存储:低延迟(10ms),热点突出;

文件存储:不同技术各有不同;

对象存储:100ms-1s,冷数据;

2、可分步性不同

块存储:异地不现实;

文件存储:可分布式,但有瓶颈;

对象存储:分步并发能力高;

3、文件大小不同

块存储:大小都可以,热点突出;

文件存储:适合大文件;

对象存储:适合各种大小;

4、接口不同

块存储:Driver,kernel mole ;

文件存储:POSIX;

对象存储:Restful API ;

5、典型技术不同

块存储:SAN;

文件存储: HDFS,GFS;

对象存储:Swift,Amazon S3;

6、适合场景不同

块存储:银行;

文件存储:数据中心;

对象存储:网络媒体文件存储。

(8)共享块存储扩展阅读:

对象存储、文件存储和块存储的联系:

通常来讲,磁盘阵列都是基于Block块的存储,而所有的NAS产品都是文件级存储。

1. 块存储:DAS SAN

a) DAS(Direct Attach Storage): 是直接连接于主机服务器的一种存储方式,每台服务器有独立的存储设备,每台主机服务器的存储设备无法互通,需要跨主机存取资料室,必须经过相对复杂的设定,若主机分属不同的操作系统,则更复杂。

应用:单一网络环境下且数据交换量不大,性能要求不高的环境,技术实现较早。

b) SAN(Storage Area Network): 是一种高速(光纤)网络联接专业主机服务器的一种存储方式,此系统会位于主机群的后端,它使用高速I/O联接方式,如:SCSI,ESCON及Fibre-Channels.特点是,代价高、性能好。但是由于SAN系统的价格较高,且可扩展性较差,已不能满足成千上万个CPU规模的系统。

应用:对网速要求高、对数据可靠性和安全性要求高、对数据共享的性能要求高的应用环境中。

2. 文件存储

通常NAS产品都是文件级存储。

NAS(Network Attached Storage):是一套网络存储设备,通常直接连在网络上并提供资料存取服务,一套NAS储存设备就如同一个提供数据文件服务的系统,特点是性价比高。

它采用NFS或CIFS命令集访问数据,以文件为传输协议,可扩展性好、价格便宜、用户易管理。目前在集群计算中应用较多的NFS文件系统,但由于NAS的协议开销高、带宽低、延迟大,不利于在高性能集群中应用。

3. 对象存储:

总体上讲,对象存储同时兼具SAN高级直接访问磁盘特点及NAS的分布式共享特点。

核心是将数据通路(数据读或写)和控制通路(元数据)分离,并且基于对象存储设备(OSD),构建存储系统,每个对象存储设备具备一定的职能,能够自动管理其上的数据分布。

对象储存结构组成部分(对象、对象存储设备、元数据服务器、对象存储系统的客户端)

9. 什么是共享内存,就是有的笔记本是共享内存,多大啊共享内存好吗和256M的哪个好

共享内存指在多处理器的计算机系统中,可以被不同中央处理器(CPU)访问的大容量内存。由于多个CPU需要快速访问存储器,这样就要对存储器进行缓存(Cache)。任何一个缓存的数据被更新后,由于其他处理器也可能要存取,共享内存就需要立即更新,否则不同的处理器可能用到不同的数据。共享内存 (shared memory)是 Unix下的多进程之间的通信方法 ,这种方法通常用于一个程序的多进程间通信,实际上多个程序间也可以通过共享内存来传递信息。

共享内存的创建
共享内存是存在于内核级别的一种资源,在shell中可以使用ipcs命令来查看当前系统IPC中的状态,在文件系统/proc目录下有对其描述的相应文件。函数shmget可以创建或打开一块共享内存区。函数原型如下: #include <sys/shm.h> int shmget( key_t key, size_t size, int flag ); 函数中参数key用来变换成一个标识符,而且每一个IPC对象与一个key相对应。当新建一个共享内存段时,size参数为要请求的内存长度(以字节为单位)。 注意:内核是以页为单位分配内存,当size参数的值不是系统内存页长的整数倍时,系统会分配给进程最小的可以满足size长的页数,但是最后一页的剩余部分内存是不可用的。 当打开一个内存段时,参数size的值为0。参数flag中的相应权限位初始化ipc_perm结构体中的mode域。同时参数flag是函数行为参数,它指定一些当函数遇到阻塞或其他情况时应做出的反应。shmid_ds结构初始化如表14-4所示。
编辑本段初始化
shmid_ds结构数据 初 值 shmid_ds结构数据 初 值
shm_lpid 0 shm_dtime 0
shm_nattach 0 shm_ctime 系统当前值
shm_atime 0 shm_segsz 参数 size
下面实例演示了使用shmget函数创建一块共享内存。程序中在调用shmget函数时指定key参数值为IPC_PRIVATE,这个参数的意义是创建一个新的共享内存区,当创建成功后使用shell命令ipcs来显示目前系统下共享内存的状态。命令参数-m为只显示共享内存的状态。 (1)在vi编辑器中编辑该程序如下: 程序清单14-8 create_shm.c 使用shmget函数创建共享内存 #include <sys/types.h> #include <sys/ipc.h> #include <sys/shm.h> #include <stdlib.h> #include <stdio.h> #define BUFSZ 4096 int main ( void ) { int shm_id; /*共享内存标识符*/ shm_id=shmget(IPC_PRIVATE, BUFSZ, 0666 ) ; if (shm_id < 0 ) { /*创建共享内存*/ perror( "shmget" ) ; exit ( 1 ); } printf ( "successfully created segment : %d \n", shm_id ) ; system( "ipcs -m"); /*调用ipcs命令查看IPC*/ exit( 0 ); } (2)在shell中编译该程序如下: $gcc create_shm.c–o create_shm (3)在shell中运行该程序如下: $./ create_shm successfully created segment : 2752516 ------ Shared Memory Segments -------- key shmid owner perms bytes nattch status 0x00000000 65536 root 600 393216 2 dest 0x00000000 2654209 root 666 4096 0 0x0056a4d5 2686978 root 600 488 1 0x0056a4d6 2719747 root 600 131072 1 0x00000000 2752516 root 666 4096 0 上述程序中使用shmget函数来创建一段共享内存,并在结束前调用了系统shell命令ipcs –m来查看当前系统IPC状态。
编辑本段共享内存的操作
由于共享内存这一特殊的资源类型,使它不同于普通的文件,因此,系统需要为其提供专有的操作函数,而这无疑增加了程序员开发的难度(需要记忆额外的专有函数)。使用函数shmctl可以对共享内存段进行多种操作,其函数原型如下: #include <sys/shm.h> int shmctl( int shm_id, int cmd, struct shmid_ds *buf ); 函数中参数shm_id为所要操作的共享内存段的标识符,struct shmid_ds型指针参数buf的作用与参数cmd的值相关,参数cmd指明了所要进行的操作,其解释如表14-5所示。
编辑本段cmd参数详解
cmd的值 意 义
IPC_STAT 取shm_id所指向内存共享段的shmid_ds结构,对参数buf指向的结构赋值
IPC_SET 使用buf指向的结构对sh_mid段的相关结构赋值,只对以下几个域有作用,shm_perm. uid shm_perm.gid以及shm_perm.mode 注意此命令只有具备以下条件的进程才可以请求: 1.进程的用户ID等于shm_perm.cuid或者等于shm_perm.uid 2.超级用户特权进程
IPC_RMID 删除shm_id所指向的共享内存段,只有当shmid_ds结构的shm_nattch域为零时,才会真正执行删除命令,否则不会删除该段 注意此命令的请求规则与IPC_SET命令相同
SHM_LOCK 锁定共享内存段在内存,此命令只能由超级用户请求
SHM_UNLOCK 对共享内存段解锁,此命令只能由超级用户请求
使用函数shmat将一个存在的共享内存段连接到本进程空间,其函数原型如下: #include <sys/shm.h> void *shmat( int shm_id, const void *addr, int flag ); 函数中参数shm_id指定要引入的共享内存,参数addr与flag组合说明要引入的地址值,通常只有2种用法,addr为0,表明让内核来决定第1个可以引入的位置。addr非零,并且flag中指定SHM_RND,则此段引入到addr所指向的位置(此操作不推荐使用,因为不会只对一种硬件上运行应用程序,为了程序的通用性推荐使用第1种方法),在flag参数中可以指定要引入的方式(读写方式指定)。 %说明:函数成功执行返回值为实际引入的地址,失败返回–1。shmat函数成功执行会将shm_id段的shmid_ds结构的shm_nattch计数器的值加1。 当对共享内存段操作结束时,应调用shmdt函数,作用是将指定的共享内存段从当前进程空间中脱离出去。函数原型如下: #include <sys/shm.h> int shmdt( void *addr); 参数addr是调用shmat函数的返回值,函数执行成功返回0,并将该共享内存的shmid_ds结构的shm_nattch计数器减1,失败返回–1。 下面实例演示了操作共享内存段的流程。程序的开始部分先检测用户是否有输入,如出错则打印该命令的使用帮助。接下来从命令行读取将要引入的共享内存ID,使用shmat函数引入该共享内存,并在分离该内存之前睡眠3秒以方便查看系统IPC状态。 (1)在vi编辑器中编辑该程序如下: 程序清单14-9 opr_shm.c 操作共享内存段 #include <sys/types.h> #include <sys/ipc.h> #include <sys/shm.h> #include <stdlib.h> #include <stdio.h> int main ( int argc, char *argv[] ) { int shm_id ; char * shm_buf; if ( argc != 2 ){ /* 命令行参数错误 */ printf ( "USAGE: atshm <identifier>" ); /*打印帮助消息*/ exit (1 ); } shm_id = atoi(argv[1]); /*得到要引入的共享内存段*/ /*引入共享内存段,由内核选择要引入的位置*/ if ( (shm_buf = shmat( shm_id, 0, 0)) < (char *) 0 ){ perror ( "shmat" ); exit (1); } printf ( " segment attached at %p\n", shm_buf ); /*输出导入的位置*/ system("ipcs -m"); sleep(3); /* 休眠 */ if ( (shmdt(shm_buf)) < 0 ) { /*与导入的共享内存段分离*/ perror ( "shmdt"); exit(1); } printf ( "segment detached \n" ); system ( "ipcs -m " ); /*再次查看系统IPC状态*/ exit ( 0 ); } (2)在shell中编译该程序如下: $gcc opr_shm.c–o opr_shm (3)在shell中运行该程序如下: $./ opr_shm 2752516 segment attached at 0xb7f29000 ------ Shared Memory Segments -------- key shmid owner perms bytes nattch status 0x00000000 65536 root 600 393216 2 dest 0x00000000 2654209 root 666 4096 0 0x0056a4d5 2686978 root 600 488 1 0x0056a4d6 2719747 root 600 131072 1 0x00000000 2752516 root 666 4096 1 segment detached ------ Shared Memory Segments -------- key shmid owner perms bytes nattch status 0x00000000 65536 root 600 393216 2 dest 0x00000000 2654209 root 666 4096 0 0x0056a4d5 2686978 root 600 488 1 0x0056a4d6 2719747 root 600 131072 1 0x00000000 2752516 root 666 4096 0 上述程序中从命令行中读取所要引入的共享内存ID,并使用shmat函数引入该内存到当前的进程空间中。注意在使用shmat函数时,将参数addr的值设为0,所表达的意义是由内核来决定该共享内存在当前进程中的位置。由于在编程的过程中,很少会针对某一个特定的硬件或系统编程,所以由内核决定引入位置也就是shmat推荐的使用方式。在导入后使用shell命令ipcs –m来显示当前的系统IPC的状态,可以看出输出信息中nattch字段为该共享内存时的引用值,最后使用shmdt函数分离该共享内存并打印系统IPC的状态。
编辑本段共享内存使用注意事项
共享内存相比其他几种方式有着更方便的数据控制能力,数据在读写过程中会更透明。当成功导入一块共享内存后,它只是相当于一个字符串指针来指向一块内存,在当前进程下用户可以随意的访问。缺点是,数据写入进程或数据读出进程中,需要附加的数据结构控制,共享内存通信数据结构示意如图14-9所示。
编辑本段结构示意
%说明:图中两个进程同时遵循一定的规则来读写该内存。同时,在多进程同步或互斥上也需要附加的代码来辅助共享内存机制。 在共享内存段中都是以字符串的默认结束符为一条信息的结尾。每个进程在读写时都遵守这个规则,就不会破坏数据的完整性。

10. 共享内存有何用途

共享内存可以说是最有用的进程间通信方式,也是最快的IPC形式。两个不同进程A、B共享内存的意思是,同一块物理内存被映射到进程A、B各自的进程地址空间。进程A可以即时看到进程B对共享内存中数据的更新,反之亦然。由于多个进程共享同一块内存区域,必然需要某种同步机制,互斥锁和信号量都可以。
采用共享内存通信的一个显而易见的好处是效率高,因为进程可以直接读写内存,而不需要任何数据的拷贝。对于像管道和消息队列等通信方式,则需要在内核和用户空间进行四次的数据拷贝,而共享内存则只拷贝两次数据:一次从输入文件到共享内存区,另一次从共享内存区到输出文件。实际上,进程之间在共享内存时,并不总是读写少量数据后就解除映射,有新的通信时,再重新建立共享内存区域。而是保持共享区域,直到通信完毕为止,这样,数据内容一直保存在共享内存中,并没有写回文件。共享内存中的内容往往是在解除映射时才写回文件的。因此,采用共享内存的通信方式效率是非常高的

热点内容
装缓存下载 发布:2024-09-20 05:42:36 浏览:72
gon引擎自动回收脚本 发布:2024-09-20 05:39:39 浏览:246
好医生连锁店密码多少 发布:2024-09-20 05:09:38 浏览:15
魔兽脚本代理 发布:2024-09-20 05:09:35 浏览:99
python登陆网页 发布:2024-09-20 05:08:39 浏览:758
安卓qq飞车如何转苹果 发布:2024-09-20 04:54:30 浏览:178
存储过程中in什么意思 发布:2024-09-20 04:24:20 浏览:315
php显示数据 发布:2024-09-20 03:48:38 浏览:501
源码安装软件 发布:2024-09-20 03:44:31 浏览:354
入门编程游戏的书 发布:2024-09-20 03:31:26 浏览:236