android线程通知
① 安卓多线程间通信和多进程之间通信有什么不同
1.安卓线程间通信的方式有以下几种1)共享变量(内存)
2)管道
3)handle机制
runOnUiThread(Runnable)
view.post(Runnable)
android 进程内的消息驱动机制---Handler,MessageQueue,Runnable,Looper
Looper和Message的处理机制:首先在主线程中创建了一个handler对象,目的是为了处理从子线程发送过来的消息,然后当子线程有发送消息的需求时会使用Message对象,消息首先会被存储在Message queue消息队列中,主线程还有一个Looper消息轮询器,会循环遍历消息队列中的消息,当发现消息的时候会发送消息给handler处理(更新ui等操作),handler调用handleMessage处理完后将Message置为null以便回收.
2进程间的通信
进程间的通信:
bind机制(IPC->AIDL)
linux级共享内存
boradcast
Activity之间可以通过intent来传递数据
3.安卓结束进程几种方式
1)使用ActivityManager中的restartPackage(String packname)方法,这里清单文件里面要配置权限
2)android.os.process.killProcess(int pid)只能终止本程序的进程
3)System.exit()
4)在android2.2版本之后则不能再使用restartPackage()方法,而应该使用killBackgroundProcesses()方法,同时应该配置权限
5)利用反射调用forceStopPackage来结束- Method forceStopPackage = am.getClass().getDeclaredMethod("forceStopPackage", String.class);
- forceStopPackage.setAccessible(true);
- forceStopPackage.invoke(am, yourpkgname);
6)使用Linux指令kill -9
② android 主线程和子线程有什么区别
本文较为深入的分析了android中UI主线程与子线程。分享给大家供大家参考。具体如下:
在一个Android 程序开始运行的时候,会单独启动一个Process。默认的情况下,所有这个程序中的Activity或者Service(Service和 Activity只是Android提供的Components中的两种,除此之外还有Content Provider和Broadcast Receiver)都会跑在这个Process。
一个Android 程序默认情况下也只有一个Process,但一个Process下却可以有许多个Thread。在这么多Thread当中,有一个Thread,我们称之为UI Thread。UI Thread在Android程序运行的时候就被创建,是一个Process当中的主线程Main Thread,主要是负责控制UI界面的显示、更新和控件交互。在Android程序创建之初,一个Process呈现的是单线程模型,所有的任务都在一个线程中运行。因此,我们认为,UI Thread所执行的每一个函数,所花费的时间都应该是越短越好。而其他比较费时的工作(访问网络,下载数据,查询数据库等),都应该交由子线程去执行,以免阻塞主线程。
那么,UI Thread如何和其他Thread一起工作呢?常用方法是:诞生一个主线程的Handler物件,当做Listener去让子线程能将讯息Push到主线程的Message Quene里,以便触发主线程的handlerMessage()函数,让主线程知道子线程的状态,并在主线程更新UI。
例如,在子线程的状态发生变化时,我们需要更新UI。如果在子线程中直接更新UI,通常会抛出下面的异常:
11-07 13:33:04.393: ERROR/javaBinder(1029):android.view.ViewRoot$:Only the original thread that created a view hierarchy can touch its views.
意思是,无法在子线程中更新UI。为此,我们需要通过Handler物件,通知主线程Ui Thread来更新界面。
如下,首先创建一个Handler,来监听Message的事件:
private final int UPDATE_UI = 1;
private Handler mHandler = new MainHandler();
private class MainHandler extends Handler {
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case UPDATE_UI: {
Log.i("TTSDeamon", "UPDATE_UI");
showTextView.setText(editText.getText().toString());
ShowAnimation();
break;
}
default:
break;
}
}
}
或者:
private Handler mHandler = new Handler(){
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case UPDATE_UI: {
Log.i("TTSDeamon", "UPDATE_UI");
showTextView.setText(editText.getText().toString());
ShowAnimation();
break;
}
default:
break;
}
}
}
当子线程的状态发生变化,则在子线程中发出Message,通知更新UI。
mHandler.sendEmptyMessageDelayed(UPDATE_UI, 0);
在我们的程序中,很多Callback方法有时候并不是运行在主线程当中的,所以如果在Callback方法中更新UI失败,也可以采用上面的方法。
③ Android——消息分发机制
什么是 Handler 机制 ?
Handler 机制是 Android 中用于 线程间通信 的一套通信机制。
为什么是 Handler ?Handler 机制为什么被那么多次的提及 ?
从Android4.0开始,Android 中网络请求强制不允许在主线程中操作,而更新UI的操作则不允许在子线程中执行。当在子线程中执行网络请求,拿到服务器返回的数据之后,要更新UI。由于系统的要求,势必会产生一种矛盾:数据在子线程,更新UI要在主线程。此时我们必须要把数据返回到主线程中才行,Handler机制应运而生。
Android 中针对耗时的操作,放在主线程操作,轻者会造成 UI 卡顿,重则会直接无响应,造成 Force Close。同时在 Android 3.0 以后,禁止在主线程进行网络请求。
针对耗时或者网络操作,那就不能在主线程进行直接操作了,需要放在子线程或者是工作线程中进行操作,操作完成以后,再更新主线程即 UI 线程。这里就涉及到一个问题了,在子线程执行完成以后,怎么能更新到主线程即 UI 线程呢,针对以上问题,就需要用到 Android 的消息机制了,即: Handler, Message, MessageQueue, Looper 全家桶
Handler机制中最重要的四个对象
Handler的构造方法:
Looper :
Handler的使用:
MessageQueue:
Looper.loop()
Handler.dispatchMessage()
handler导致activity内存泄露的原因:
handler发送的消息在当前handler的消息队列中,如果此时activity finish掉了,那么消息队列的消息依旧会由handler进行处理,若此时handler声明为内部类(非静态内部类),我们知道内部类天然持有外部类的实例引用,这样在GC垃圾回收机制进行回收时发现这个Activity居然还有其他引用存在,因而就不会去回收这个Activity,进而导致activity泄露。
假如在子线程执行了耗时操作,这时用户操作进入了其他的 acitvity, 那么 MainActivity 就会被内存回收的,但是这个时候发现 Handler 还在引用着 MainActivity,内存无法及时回收,造成内存泄漏。
Handler 防止内存泄漏常见方法:
为什么通过 Handler 可以把子线程的结果通知或者携带给 UI 线程 ?
这里的 Handler 指的是主线程的 Handler ,同时与 Handler 配套的 Looper , MessageQueue 是在 UI 线程初始化的,所以在子线程中调用 Handler 发送消息可以更新 UI 线程。
Looper 在 UI 线程源码, 在 ActivityThread 类:
④ Android 怎么启动一个工作线程及线程如何与UI线程交互
启动线程就调用start方法,跟UI交互的话可以借助Handler
⑤ Android怎么正确使用wait和notify方法
经常有人有以下的说法:
notify只会通知一个在等待的对象,而notifyAll会通知所有在等待的对象,并且所有对象都会继续运行
并且,好像都有例子可以证明。上面的说法,可以说对,也可以说不对。究其原因,在于其中有一点很关键,官方的说法如下所示:
wait,notify,notifyAll:
此方法只应由作为此对象监视器的所有者的线程来调用。通过以下三种方法之一,线程可以成为此对象监视器的所有者:
通过执行此对象的同步实例方法。
通过执行在此对象上进行同步的 synchronized 语句的正文。
对于 Class 类型的对象,可以通过执行该类的同步静态方法。
一次只能有一个线程拥有对象的监视器。
以上说法,摘自javadoc。意思即,在调用中,必须持有对象监视器(即锁),我们可以理解为需要在synchronized方法内运行。那么由此话的隐含意思,即如果要继续由同步块包含的代码块,需要重新获取锁才可以。这句话,在javadoc中这样描述:
wait
此方法导致当前线程(称之为 T)将其自身放置在对象的等待集中,然后放弃此对象上的所有同步要求。出于线程调度
目的,在发生以下四种情况之一前,线程 T 被禁用,且处于休眠状态:
其他某个线程调用此对象的 notify 方法,并且线程 T 碰巧被任选为被唤醒的线程。
其他某个线程调用此对象的 notifyAll 方法。
其他某个线程中断线程 T。
大约已经到达指定的实际时间。但是,如果 timeout 为零,则不考虑实际时间,在获得通知前该线程将一直等待。
然后,从对象的等待集中删除线程 T,并重新进行线程调度。然后,该线程以常规方式与其他线程竞争,以获得在该对
象上同步的权利;一旦获得对该对象的控制权,该对象上的所有其同步声明都将被恢复到以前的状态,这就是调用 wait
方法时的情况。然后,线程 T 从 wait 方法的调用中返回。所以,从 wait 方法返回时,该对象和线程 T 的同步状态与调
用 wait 方法时的情况完全相同。
即必须重新进行获取锁,这样对于notifyAll来说,虽然所有的线程都被通知了。但是这些线程都会进行竞争,且只会有一个线程成功获取到锁,在这个线程没有执行完毕之前,其他的线程就必须等待了(只是这里不需要再notifyAll通知了,因为已经notifyAll了,只差获取锁了)有如下一个代码,可以重现这个现象。