android线程封装
‘壹’ 每个Android 都应必须了解的多线程知识点~
进程是系统调度和资源分配的一个独立单位。
在Android中,一个应用程序就是一个独立的集成,应用运行在一个独立的环境中,可以避免其他应用程序/进程的干扰。当我们启动一个应用程序时,系统就会创建一个进程(该进程是从Zygote中fork出来的,有独立的ID),接着为这个进程创建一个主线程,然后就可以运行MainActivity了,应用程序的组件默认都是运行在其进程中。开发者可以通过设置应用的组件的运行进程,在清单文件中给组件设置:android:process = "进程名";可以达到让组件运行在不同进程中的目的。让组件运行在不同的进程中,既有好处,也有坏处。我们依次的说明下。
好处:每一个应用程序(也就是每一个进程)都会有一个内存预算,所有运行在这个进程中的程序使用的总内存不能超过这个值,让组件运行不同的进程中,可以让主进程可以拥有更多的空间资源。当我们的应用程序比较大,需要的内存资源比较多时(也就是用户会抱怨应用经常出现OutOfMemory时),可以考虑使用多进程。
坏处:每个进程都会有自己的虚拟机实例,因此让在进程间共享一些数据变得相对困难,需要采用进程间的通信来实现数据的共享。
线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。
在Android中,线程会有那么几种状态:创建、就绪、运行、阻塞、结束。当应用程序有组件在运行时,UI线程是处于运行状态的。默认情况下,应用的所有组件的操作都是在UI线程里完成的,包括响应用户的操作(触摸,点击等),组件生命周期方法的调用,UI的更新等。因此如果UI线程处理阻塞状态时(在线程里做一些耗时的操作,如网络连接等),就会不能响应各种操作,如果阻塞时间达到5秒,就会让程序处于ANR(application not response)状态。
1.线程作用
减少程序在并发执行时所付出的时空开销,提高操作系统的并发性能。
2.线程分类
守护线程、非守护线程(用户线程)
2.1 守护线程
定义:守护用户线程的线程,即在程序运行时为其他线程提供一种通用服务
常见:如垃圾回收线程
设置方式:thread.setDaemon(true);//设置该线程为守护线程
2.2 非守护线程(用户线程)
主线程 & 子线程。
2.2.1 主线程(UI线程)
定义:Android系统在程序启动时会自动启动一条主线程
作用:处理四大组件与用户进行交互的事情(如UI、界面交互相关)
因为用户随时会与界面发生交互,因此主线程任何时候都必须保持很高的响应速度,所以主线程不允许进行耗时操作,否则会出现ANR。
2.2.2 子线程(工作线程)
定义:手动创建的线程
作用:耗时的操作(网络请求、I/O操作等)
2.3 守护线程与非守护线程的区别和联系
区别:虚拟机是否已退出,即
a. 当所有用户线程结束时,因为没有守护的必要,所以守护线程也会终止,虚拟机也同样退出
b. 反过来,只要任何用户线程还在运行,守护线程就不会终止,虚拟机就不会退出
3.线程优先级
3.1 表示
线程优先级分为10个级别,分别用Thread类常量表示。
3.2 设置
通过方法setPriority(int grade)进行优先级设置,默认线程优先级是5,即 Thread.NORM_PRIORITY。
4.线程状态
创建状态:当用 new 操作符创建一个线程的时候
就绪状态:调用 start 方法,处于就绪状态的线程并不一定马上就会执行 run 方法,还需要等待CPU的调度
运行状态:CPU 开始调度线程,并开始执行 run 方法
阻塞(挂起)状态:线程的执行过程中由于一些原因进入阻塞状态,比如:调用 sleep/wait 方法、尝试去得到一个锁等
结束(消亡)状态:run 方法执行完 或者 执行过程中遇到了一个异常
(1)start()和run()的区别
通过调用Thread类的start()方法来启动一个线程,这时此线程是处于就绪状态,并没有运行。调用Thread类调用run()方法来完成其运行操作的,方法run()称为线程体,它包含了要执行的这个线程的内容,run()运行结束,此线程终止,然后CPU再调度其它线程。
(2)sleep()、wait()、yield()的区别
sleep()方法属于Thread类,wait()方法属于Object类。
调用sleep()方法,线程不会释放对象锁,只是暂停执行指定的时间,会自动恢复运行状态;调用wait()方法,线程会放弃对象锁,进入等待此对象的等待锁定池,不调用notify()方法,线程永远处于就绪(挂起)状态。
yield()直接由运行状态跳回就绪状态,表示退让线程,让出CPU,让CPU调度器重新调度。礼让可能成功,也可能不成功,也就是说,回到调度器和其他线程进行公平竞争。
1.Android线程的原则
(1)为什么不能再主线程中做耗时操作
防止ANR, 不能在UI主线程中做耗时的操作,因此我们可以把耗时的操作放在另一个工作线程中去做。操作完成后,再通知UI主线程做出相应的响应。这就需要掌握线程间通信的方式了。 在Android中提供了两种线程间的通信方式:一种是AsyncTask机制,另一种是Handler机制。
(2)为什么不能在非UI线程中更新UI 因为Android的UI线程是非线程安全的,应用更新UI,是调用invalidate()方法来实现界面的重绘,而invalidate()方法是非线程安全的,也就是说当我们在非UI线程来更新UI时,可能会有其他的线程或UI线程也在更新UI,这就会导致界面更新的不同步。因此我们不能在非UI主线程中做更新UI的操作。
2.Android实现多线程的几种方式
3.为何需要多线程
多线程的本质就是异步处理,直观一点说就是不要让用户感觉到“很卡”。
4.多线程机制的核心是啥
多线程核心机制是Handler
推荐Handler讲解视频: 面试总被问到Handler?带你从源码的角度解读Handler核心机制
根据上方提到的 多进程、多线程、Handler 问题,我整理了一套 Binder与Handler 机制解析的学习文档,提供给大家进行学习参考,有需要的可以 点击这里直接获取!!! 里面记录许多Android 相关学习知识点。
‘贰’ android如何自定义进行线程
Runnable begin = new Runnable(){
@Override
public void run(){
try{
Thread.sleep(2000);
Message msg = new Message();
msg.what = 100;
this.mHandler.sendMessage(msg);
}
catch(InterruptedException e){}
}
};
private Handler mHandler = new Handler() {
public void handleMessage(Message msg) {
switch (msg.what) {
case 100:
tv1.setBackgroundColor(Color.RED);
break;
}
};
‘叁’ Android中的线程状态 - AsyncTask详解
在操作系统中,线程是操作系统调度的最小单元,同时线程又是一种受限的系统资源,即线程不可能无限制地产生,并且 线程的创建和销毁都会有相应的开销。 当系统中存在大量的线程时,系统会通过会时间片轮转的方式调度每个线程,因此线程不可能做到绝对的并行。
如果在一个进程中频繁地创建和销毁线程,显然不是高效的做法。正确的做法是采用线程池,一个线程池中会缓存一定数量的线程,通过线程池就可以避免因为频繁创建和销毁线程所带来的系统开销。
AsyncTask是一个抽象类,它是由Android封装的一个轻量级异步类(轻量体现在使用方便、代码简洁),它可以在线程池中执行后台任务,然后把执行的进度和最终结果传递给主线程并在主线程中更新UI。
AsyncTask的内部封装了 两个线程池 (SerialExecutor和THREAD_POOL_EXECUTOR)和 一个Handler (InternalHandler)。
其中 SerialExecutor线程池用于任务的排队,让需要执行的多个耗时任务,按顺序排列 , THREAD_POOL_EXECUTOR线程池才真正地执行任务 , InternalHandler用于从工作线程切换到主线程 。
1.AsyncTask的泛型参数
AsyncTask是一个抽象泛型类。
其中,三个泛型类型参数的含义如下:
Params: 开始异步任务执行时传入的参数类型;
Progress: 异步任务执行过程中,返回下载进度值的类型;
Result: 异步任务执行完成后,返回的结果类型;
如果AsyncTask确定不需要传递具体参数,那么这三个泛型参数可以用Void来代替。
有了这三个参数类型之后,也就控制了这个AsyncTask子类各个阶段的返回类型,如果有不同业务,我们就需要再另写一个AsyncTask的子类进行处理。
2.AsyncTask的核心方法
onPreExecute()
这个方法会在 后台任务开始执行之间调用,在主线程执行。 用于进行一些界面上的初始化操作,比如显示一个进度条对话框等。
doInBackground(Params...)
这个方法中的所有代码都会 在子线程中运行,我们应该在这里去处理所有的耗时任务。
任务一旦完成就可以通过return语句来将任务的执行结果进行返回,如果AsyncTask的第三个泛型参数指定的是Void,就可以不返回任务执行结果。 注意,在这个方法中是不可以进行UI操作的,如果需要更新UI元素,比如说反馈当前任务的执行进度,可以调用publishProgress(Progress...)方法来完成。
onProgressUpdate(Progress...)
当在后台任务中调用了publishProgress(Progress...)方法后,这个方法就很快会被调用,方法中携带的参数就是在后台任务中传递过来的。 在这个方法中可以对UI进行操作,在主线程中进行,利用参数中的数值就可以对界面元素进行相应的更新。
onPostExecute(Result)
当doInBackground(Params...)执行完毕并通过return语句进行返回时,这个方法就很快会被调用。返回的数据会作为参数传递到此方法中, 可以利用返回的数据来进行一些UI操作,在主线程中进行,比如说提醒任务执行的结果,以及关闭掉进度条对话框等。
上面几个方法的调用顺序:
onPreExecute() --> doInBackground() --> publishProgress() --> onProgressUpdate() --> onPostExecute()
如果不需要执行更新进度则为onPreExecute() --> doInBackground() --> onPostExecute(),
除了上面四个方法,AsyncTask还提供了onCancelled()方法, 它同样在主线程中执行,当异步任务取消时,onCancelled()会被调用,这个时候onPostExecute()则不会被调用 ,但是要注意的是, AsyncTask中的cancel()方法并不是真正去取消任务,只是设置这个任务为取消状态,我们需要在doInBackground()判断终止任务。就好比想要终止一个线程,调用interrupt()方法,只是进行标记为中断,需要在线程内部进行标记判断然后中断线程。
3.AsyncTask的简单使用
这里我们模拟了一个下载任务,在doInBackground()方法中去执行具体的下载逻辑,在onProgressUpdate()方法中显示当前的下载进度,在onPostExecute()方法中来提示任务的执行结果。如果想要启动这个任务,只需要简单地调用以下代码即可:
4.使用AsyncTask的注意事项
①异步任务的实例必须在UI线程中创建,即AsyncTask对象必须在UI线程中创建。
②execute(Params... params)方法必须在UI线程中调用。
③不要手动调用onPreExecute(),doInBackground(Params... params),onProgressUpdate(Progress... values),onPostExecute(Result result)这几个方法。
④不能在doInBackground(Params... params)中更改UI组件的信息。
⑤一个任务实例只能执行一次,如果执行第二次将会抛出异常。
先从初始化一个AsyncTask时,调用的构造函数开始分析。
这段代码虽然看起来有点长,但实际上并没有任何具体的逻辑会得到执行,只是初始化了两个变量,mWorker和mFuture,并在初始化mFuture的时候将mWorker作为参数传入。mWorker是一个Callable对象,mFuture是一个FutureTask对象,这两个变量会暂时保存在内存中,稍后才会用到它们。 FutureTask实现了Runnable接口,关于这部分内容可以看这篇文章。
mWorker中的call()方法执行了耗时操作,即result = doInBackground(mParams);,然后把执行得到的结果通过postResult(result);,传递给内部的Handler跳转到主线程中。在这里这是实例化了两个变量,并没有开启执行任务。
那么mFuture对象是怎么加载到线程池中,进行执行的呢?
接着如果想要启动某一个任务,就需要调用该任务的execute()方法,因此现在我们来看一看execute()方法的源码,如下所示:
调用了executeOnExecutor()方法,具体执行逻辑在这个方法里面:
可以 看出,先执行了onPreExecute()方法,然后具体执行耗时任务是在exec.execute(mFuture),把构造函数中实例化的mFuture传递进去了。
exec具体是什么?
从上面可以看出具体是sDefaultExecutor,再追溯看到是SerialExecutor类,具体源码如下:
终于追溯到了调用了SerialExecutor 类的execute方法。SerialExecutor 是个静态内部类,是所有实例化的AsyncTask对象公有的,SerialExecutor 内部维持了一个队列,通过锁使得该队列保证AsyncTask中的任务是串行执行的,即多个任务需要一个个加到该队列中,然后执行完队列头部的再执行下一个,以此类推。
在这个方法中,有两个主要步骤。
①向队列中加入一个新的任务,即之前实例化后的mFuture对象。
②调用 scheleNext()方法,调用THREAD_POOL_EXECUTOR执行队列头部的任务。
由此可见SerialExecutor 类仅仅为了保持任务执行是串行的,实际执行交给了THREAD_POOL_EXECUTOR。
THREAD_POOL_EXECUTOR又是什么?
实际是个线程池,开启了一定数量的核心线程和工作线程。然后调用线程池的execute()方法。执行具体的耗时任务,即开头构造函数中mWorker中call()方法的内容。先执行完doInBackground()方法,又执行postResult()方法,下面看该方法的具体内容:
该方法向Handler对象发送了一个消息,下面具体看AsyncTask中实例化的Hanlder对象的源码:
在InternalHandler 中,如果收到的消息是MESSAGE_POST_RESULT,即执行完了doInBackground()方法并传递结果,那么就调用finish()方法。
如果任务已经取消了,回调onCancelled()方法,否则回调 onPostExecute()方法。
如果收到的消息是MESSAGE_POST_PROGRESS,回调onProgressUpdate()方法,更新进度。
InternalHandler是一个静态类,为了能够将执行环境切换到主线程,因此这个类必须在主线程中进行加载。所以变相要求AsyncTask的类必须在主线程中进行加载。
到此为止,从任务执行的开始到结束都从源码分析完了。
AsyncTask的串行和并行
从上述源码分析中分析得到,默认情况下AsyncTask的执行效果是串行的,因为有了SerialExecutor类来维持保证队列的串行。如果想使用并行执行任务,那么可以直接跳过SerialExecutor类,使用executeOnExecutor()来执行任务。
四、AsyncTask使用不当的后果
1.)生命周期
AsyncTask不与任何组件绑定生命周期,所以在Activity/或者Fragment中创建执行AsyncTask时,最好在Activity/Fragment的onDestory()调用 cancel(boolean);
2.)内存泄漏
3.) 结果丢失
屏幕旋转或Activity在后台被系统杀掉等情况会导致Activity的重新创建,之前运行的AsyncTask(非静态的内部类)会持有一个之前Activity的引用,这个引用已经无效,这时调用onPostExecute()再去更新界面将不再生效。
自己是从事了七年开发的Android工程师,不少人私下问我,2019年Android进阶该怎么学,方法有没有?
没错,年初我花了一个多月的时间整理出来的学习资料,希望能帮助那些想进阶提升Android开发,却又不知道怎么进阶学习的朋友。【 包括高级UI、性能优化、架构师课程、NDK、Kotlin、混合式开发(ReactNative+Weex)、Flutter等架构技术资料 】,希望能帮助到您面试前的复习且找到一个好的工作,也节省大家在网上搜索资料的时间来学习。
‘肆’ Android线程池的使用
在Android中有主线程和子线程的区分。主线程又称为UI线程,主要是处理一些和界面相关的事情,而子线程主要是用于处理一些耗时比较大的一些任务,例如一些网络操作,IO请求等。如果在主线程中处理这些耗时的任务,则有可能会出现ANR现象(App直接卡死)。
线程池,从名字的表明含义上我们知道线程池就是包含线程的一个池子,它起到新建线程、管理线程、调度线程等作用。
既然Android中已经有了线程的概念,那么为什么需要使用线程池呢?我们从两个方面给出使用线程池的原因。
在Android中线程池就是ThreadPoolExecutor对象。我们先来看一下ThreadPoolExecutor的构造函数。
我们分别说一下当前的几个参数的含义:
第一个参数corePoolSize为 核心线程数 ,也就是说线程池中至少有这么多的线程,即使存在的这些线程没有执行任务。但是有一个例外就是,如果在线程池中设置了allowCoreThreadTimeOut为true,那么在 超时时间(keepAliveTime) 到达后核心线程也会被销毁。
第二个参数maximumPoolSize为 线程池中的最大线程数 。当活动线程数达到这个数后,后续添加的新任务会被阻塞。
第三个参数keepAliveTime为 线程的保活时间 ,就是说如果线程池中有多于核心线程数的线程,那么在线程没有任务的那一刻起开始计时,如果超过了keepAliveTime,还没有新的任务过来,则该线程就要被销毁。同时如果设置了allowCoreThreadTimeOut为true,该时间也就是上面第一条所说的 超时时间 。
第四个参数unit为 第三个参数的计时单位 ,有毫秒、秒等。
第五个参数workQueue为 线程池中的任务队列 ,该队列持有由execute方法传递过来的Runnable对象(Runnable对象就是一个任务)。这个任务队列的类型是BlockQueue类型,也就是阻塞队列,当队列的任务数为0时,取任务的操作会被阻塞;当队列的任务数满了(活动线程达到了最大线程数),添加操作就会阻塞。
第六个参数threadFactory为 线程工厂 ,当线程池需要创建一个新线程时,使用线程工厂来给线程池提供一个线程。
第七个参数handler为 拒绝策略 ,当线程池使用有界队列时(也就是第五个参数),如果队列满了,任务添加到线程池的时候的一个拒绝策略。
可以看到FixedThreadPool的构建调用了ThreadPoolExecutor的构造函数。从上面的调用中可以看出FixedThreadPool的几个特点:
可以看到CacheThreadPool的构建调用了ThreadPoolExecutor的构造函数。从上面的调用中可以看出CacheThreadPool的几个特点:
可以看到ScheledThreadPoolExecutor的构建调用了ThreadPoolExecutor的构造函数。从上面的调用中可以看出ScheledThreadPoolExecutor的几个特点:
可以看到SingleThreadExecutor的构建调用了ThreadPoolExecutor的构造函数。从上面的调用中可以看出SingleThreadExecutor的几个特点:
‘伍’ eclipse中做android游戏如何创建Thread(线程)
1、第一种方式:使用Thread不带参数的构造方法,并重写run()方法
new Thread(){
public void run(){
//在run方法中调用需要执行的代码,完成后发送消息与主线程交互
Message msg=new Message();
msg.what=110;
handler.sengMessage();
}
}.start();
2、第二种方式:使用Thread带参数的构造方法,并重写Runable()中的run方法
new Thread(new Runable(){
public void run(){
//在run方法中调用需要执行的代码,完成后发送消息与主线程交互
Message msg=new Message();
msg.what=110;
handler.sengMessage();
}).start();
3、在UI线程中接收Thread子线程发送的消息,刷新UI界面
‘陆’ Android中的线程和线程池
一、除了Thread外,扮演线程角色的还有:AsyncTask和IntentService,同时HandlerThread也扮演特殊的线程。
IntentService:内部采用HandlerThread来执行,像一个后台线程,同时是一个服务,不容易被系统杀死。
二、HandlerThread的run方法是一个无限循环
三、IntentService中任务是排队执行的
四、AsyncTask
1、Android1.6之前串悄段桐行执行任务,1.6时候采用线程池里的并行,Android3.0开始又开始串行(为了避免并发错误),单任可以并行。
2、AsyncTask必须在UI线程调用(不过这个不是绝对的,和版本有关燃腔系,API 16之前,API 16到 22, API 22以后) 参考一
原因:内部有静态Handler,采用UI线程的Looper来处理消息,这就是为什么AsyncTask必须在UI线程调用,因为子线程默认没有Looper无法创建下面的Handler,程序会直接Crash
3、AsyncTask中有两个线程池和一个Handler,一个线程池用启坦于任务排队,一个线程池用于真正的执行任务,InternalHandler用于将
执行环境从线程池切换到主线程
AsyncTask串行与并行
五、线程池
线程池中多余的线程是如何回收的
‘柒’ android 怎么样写一个线程类
在android中有两种实现线程thread的方法:
一种是,扩展java.lang.Thread类
另一种是,实现Runnable接口
举例如下 :
package com.my;
import android.app.Activity;
import android.os.Bundle;
import android.os.Handler;
import android.os.Message;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
public class Demo_For_Copy extends Activity
{
public Button button;
public Handler mHandler=new Handler()
{
public void handleMessage(Message msg)
{
switch(msg.what)
{
case 1:
button.setText(R.string.text2);
break;
default:
break;
}
super.handleMessage(msg);
}
};
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
button=(Button)findViewById(R.id.button);
Thread thread=new Thread(new Runnable()
{
@Override
public void run()
{
Log.e("1111", "111111111");
// TODO Auto-generated method stub
Message message=new Message();
message.what=1;
mHandler.sendMessage(message);
}
});
thread.start();
}
}
‘捌’ Android 中的“子线程”解析
Android 中线程可分为 主线程 和 子线程 两类,其中主线程也就是 UI线程 ,它的主要这作用就是运行四大组件、处理界面交互。子线程则主要是处理耗时任务,也是我们要重点分析的。
首先 Java 中的各种线程在 Android 里是通用的,Android 特有的线程形态也是基于 Java 的实现的,所以有必要先简单的了解下 Java 中的线程,本文主要包括以下内容:
在 Java 中要创建子线程可以直接继承 Thread 类,重写 run() 方法:
或者实现 Runnable 接口,然后用Thread执行Runnable,这种方式比较常用:
简单的总结下:
Callable 和 Runnable 类似,都可以用来处理具体的耗时任务逻辑的,但是但具体的差别在哪里呢?看一个小例子:
定义 MyCallable 实现了 Callable 接口,和之前 Runnable 的 run() 方法对比下, call() 方法是有返回值的哦,泛型就是返回值的类型:
一般会通过线程池来执行 Callable (线程池相关内容后边会讲到),执行结果就是一个 Future 对象:
可以看到,通过线程池执行 MyCallable 对象返回了一个 Future 对象,取出执行结果。
Future 是一个接口,从其内部的方法可以看出它提供了取消任务(有坑!!!)、判断任务是否完成、获取任务结果的功能:
Future 接口有一个 FutureTask 实现类,同时 FutureTask 也实现了 Runnable 接口,并提供了两个构造函数:
用 FutureTask 一个参数的构造函数来改造下上边的例子:
FutureTask 内部有一个 done() 方法,代表 Callable 中的任务已经结束,可以用来获取执行结果:
所以 Future + Callable 的组合可以更方便的获取子线程任务的执行结果,更好的控制任务的执行,主要的用法先说这么多了,其实 AsyncTask 内部也是类似的实现!
注意, Future 并不能取消掉运行中的任务,这点在后边的 AsyncTask 解析中有提到。
Java 中线程池的具体的实现类是 ThreadPoolExecutor ,继承了 Executor 接口,这些线程池在 Android 中也是通用的。使用线程池的好处:
常用的构造函数如下:
一个常规线程池可以按照如下方式来实现:
执行任务:
基于 ThreadPoolExecutor ,系统扩展了几类具有新特性的线程池:
线程池可以通过 execute() 、 submit() 方法开始执行任务,主要差别从方法的声明就可以看出,由于 submit() 有返回值,可以方便得到任务的执行结果:
要关闭线程池可以使用如下方法:
IntentService 是 Android 中一种特殊的 Service,可用于执行后台耗时任务,任务结束时会自动停止,由于属于系统的四大组件之一,相比一般线程具有较高的优先级,不容易被杀死。用法和普通 Service 基本一致,只需要在 onHandleIntent() 中处理耗时任务即可:
至于 HandlerThread,它是 IntentService 内部实现的重要部分,细节内容会在 IntentService 源码中说到。
IntentService 首次创建被启动的时候其生命周期方法 onCreate() 会先被调用,所以我们从这个方法开始分析:
这里出现了 HandlerThread 和 ServiceHandler 两个类,先搞明白它们的作用,以便后续的分析。
首先看 HandlerThread 的核心实现:
首先它继承了 Thread 类,可以当做子线程来使用,并在 run() 方法中创建了一个消息循环系统、开启消息循环。
ServiceHandler 是 IntentService 的内部类,继承了 Handler,具体内容后续分析:
现在回过头来看 onCreate() 方法主要是一些初始化的操作, 首先创建了一个 thread 对象,并启动线程,然后用其内部的 Looper 对象 创建一个 mServiceHandler 对象,将子线程的 Looper 和 ServiceHandler 建立了绑定关系,这样就可以使用 mServiceHandler 将消息发送到子线程去处理了。
生命周期方法 onStartCommand() 方法会在 IntentService 每次被启动时调用,一般会这里处理启动 IntentService 传递 Intent 解析携带的数据:
又调用了 start() 方法:
就是用 mServiceHandler 发送了一条包含 startId 和 intent 的消息,消息的发送还是在主线程进行的,接下来消息的接收、处理就是在子线程进行的:
当接收到消息时,通过 onHandleIntent() 方法在子线程处理 intent 对象, onHandleIntent() 方法执行结束后,通过 stopSelf(msg.arg1) 等待所有消息处理完毕后终止服务。
为什么消息的处理是在子线程呢?这里涉及到 Handler 的内部消息机制,简单的说,因为 ServiceHandler 使用的 Looper 对象就是在 HandlerThread 这个子线程类里创建的,并通过 Looper.loop() 开启消息循环,不断从消息队列(单链表)中取出消息,并执行,截取 loop() 的部分源码:
dispatchMessage() 方法间接会调用 handleMessage() 方法,所以最终 onHandleIntent() 就在子线程中划线执行了,即 HandlerThread 的 run() 方法。
这就是 IntentService 实现的核心,通过 HandlerThread + Hanlder 把启动 IntentService 的 Intent 从主线程切换到子线程,实现让 Service 可以处理耗时任务的功能!
AsyncTask 是 Android 中轻量级的异步任务抽象类,它的内部主要由线程池以及 Handler 实现,在线程池中执行耗时任务并把结果通过 Handler 机制中转到主线程以实现UI操作。典型的用法如下:
从 Android3.0 开始,AsyncTask 默认是串行执行的:
如果需要并行执行可以这么做:
AsyncTask 的源码不多,还是比较容易理解的。根据上边的用法,可以从 execute() 方法开始我们的分析:
看到 @MainThread 注解了吗?所以 execute() 方法需要在主线程执行哦!
进而又调用了 executeOnExecutor() :
可以看到,当任务正在执行或者已经完成,如果又被执行会抛出异常!回调方法 onPreExecute() 最先被执行了。
传入的 sDefaultExecutor 参数,是一个自定义的串行线程池对象,所有任务在该线程池中排队执行:
可以看到 SerialExecutor 线程池仅用于任务的排队, THREAD_POOL_EXECUTOR 线程池才是用于执行真正的任务,就是我们线程池部分讲到的 ThreadPoolExecutor :
再回到 executeOnExecutor() 方法中,那么 exec.execute(mFuture) 就是触发线程池开始执行任务的操作了。
那 executeOnExecutor() 方法中的 mWorker 是什么? mFuture 是什么?答案在 AsyncTask 的构造函数中:
原来 mWorker 是一个 Callable 对象, mFuture 是一个 FutureTask 对象,继承了 Runnable 接口。所以 mWorker 的 call() 方法会在 mFuture 的 run() 方法中执行,所以 mWorker 的 call() 方法在线程池得到执行!
同时 doInBackground() 方法就在 call() 中方法,所以我们自定义的耗时任务逻辑得到执行,不就是我们第二部分讲的那一套吗!
doInBackground() 的返回值会传递给 postResult() 方法:
就是通过 Handler 将最终的耗时任务结果从子线程发送到主线程,具体的过程是这样的, getHandler() 得到的就是 AsyncTask 构造函数中初始化的 mHandler , mHander 又是通过 getMainHandler() 赋值的:
可以在看到 sHandler 是一个 InternalHandler 类对象:
所以 getHandler() 就是在得到在主线程创建的 InternalHandler 对象,所以
就可以完成耗时任务结果从子线程到主线程的切换,进而可以进行相关UI操作了。
当消息是 MESSAGE_POST_RESULT 时,代表任务执行完成, finish() 方法被调用:
如果任务没有被取消的话执行 onPostExecute() ,否则执行 onCancelled() 。
如果消息是 MESSAGE_POST_PROGRESS , onProgressUpdate() 方法被执行,根据之前的用法可以 onProgressUpdate() 的执行需要我们手动调用 publishProgress() 方法,就是通过 Handler 来发送进度数据:
进行中的任务如何取消呢?AsyncTask 提供了一个 cancel(boolean mayInterruptIfRunning) ,参数代表是否中断正在执行的线程任务,但是呢并不靠谱, cancel() 的方法注释中有这么一段:
大致意思就是调用 cancel() 方法后, onCancelled(Object) 回调方法会在 doInBackground() 之后被执行而 onPostExecute() 将不会被执行,同时你应该 doInBackground() 回调方法中通过 isCancelled() 来检查任务是否已取消,进而去终止任务的执行!
所以只能自己动手了:
AsyncTask 整体的实现流程就这些了,源码是最好的老师,自己跟着源码走一遍有些问题可能就豁然开朗了!