android线程循环
‘壹’ Android-Handle(线程间通信)详解
线程间通信是在Android开发中比较经常遇到的,我们刷新UI界面一般是通过子线程做完某些事情后,要改变主页面就要通过数据的通信,让主线程接收到信息后自己改变UI界面。
1. Handle 先进先出原则;
2. Looper 类用来管理特定线程内对象之间的消息交换(MessageExchange);
3. Message 类用来保存数据。
1.Looper: 一个线程可以产生一个Looper对象,由它来管理此线程里的MessageQueue(消息队列);
2.Handler: 你可以构造Handler对象来与Looper沟通,以便push新消息到MessageQueue里;或者接收Looper从Message Queue取出)所送来的消息;
android.os.Message的主要功能是进行消息的封装,同时可以指定消息的操作形式,Message类定义的变量和常用方法如下:
在整个消息处理机制中,message又叫task,封装了任务携带的信息和处理该任务的handler。message的用法比较简单,但是有这么几点需要注意:
在使用Handler处理Message时,需要Looper(通道)来完成。在一个Activity中,系统会自动帮用户启动Looper对象,而在一个用户自定义的类中,则需要用户手工调用Looper类中的方法,然后才可以正常启动Looper对象。Looper的字面意思是“循环者”,它被设计用来使一个普通线程变成Looper线程。所谓Looper线程就是循环工作的线程。在程序开发中(尤其是GUI开发中),我们经常会需要一个线程不断循环,一旦有新任务则执行,执行完继续等待下一个任务,这就是Looper线程。使用Looper类创建Looper线程很简单:
这是在子线程中创建Handler的情况,如果在主线程中创建Handler是不需要调用 Looper.prepare(); 和 Looper.loop(); 方法。
Handler是更新UI界面的机制,也是消息处理的机制。我们可以通过Handle发送消息,也可以处理消息。
Android在设计的时候,封装了一套消息创建、传递、处理机制,如果不遵循这样的机制就没有办法更新UI信息,就会抛出异常。
创建Handler实例化对象时,可以重写的回调方法:
‘贰’ Android Handle中Looper.loop()的死循环为什么在主线程中不会产生卡死现象
1. 主线程,负责一些UI更新操作,归类为一个线程,线程在Android中是有生命周期的,任务最终是会结束的。
2. Looper.loop()的死循环正是维护了主线程的超长生命周期,loop方法一直循环处理任务,没有任务的时候会休眠,有任务的时候会唤醒然后进行处理,所以也不会占用太多系统资源。
3. 卡死,可能有误解,循环的过程中本生不会出现ANR,在循环的过程中,如果执行了耗时且在规定时间内没有完成消息派发,才会出现ANR。
‘叁’ Android中的线程和线程池
一、除了Thread外,扮演线程角色的还有:AsyncTask和IntentService,同时HandlerThread也扮演特殊的线程。
IntentService:内部采用HandlerThread来执行,像一个后台线程,同时是一个服务,不容易被系统杀死。
二、HandlerThread的run方法是一个无限循环
三、IntentService中任务是排队执行的
四、AsyncTask
1、Android1.6之前串悄段桐行执行任务,1.6时候采用线程池里的并行,Android3.0开始又开始串行(为了避免并发错误),单任可以并行。
2、AsyncTask必须在UI线程调用(不过这个不是绝对的,和版本有关燃腔系,API 16之前,API 16到 22, API 22以后) 参考一
原因:内部有静态Handler,采用UI线程的Looper来处理消息,这就是为什么AsyncTask必须在UI线程调用,因为子线程默认没有Looper无法创建下面的Handler,程序会直接Crash
3、AsyncTask中有两个线程池和一个Handler,一个线程池用启坦于任务排队,一个线程池用于真正的执行任务,InternalHandler用于将
执行环境从线程池切换到主线程
AsyncTask串行与并行
五、线程池
线程池中多余的线程是如何回收的
‘肆’ Android在子线程用handler发送的消息,主线程是怎么loop到的
因为你是在主线程创建的handler实例,比如你是这样实例化handler
那么我们进到handler源码看一下
可以看到这里会调用重载的另外一个构造方法,我们再跟进
我们可以看到
mLooper=looper.myLooper();
这是获取当前线程的looper实例,也就是主线程的looper。所以当发送消息的时候主线程就可以获取到消息。往下看系统还会mLooper是否为空,如果为空就会抛出异常,意思是当前线程没有looper实例,这也是我们在子线程中没有创建looper的实例的时候创建handler会报错的原因,主线程不会报错是因为程序在启动的时候在activitythread中的main方法就创建了looper实例,看系统源码
然后调用looper.loop();就开始了消息循环。这就是为什么在主线程发消息住线程还能收到消息的原因。因为发送消息的实例是在主线程实例化的就有了主线程的looper。
‘伍’ Android线程池ThreadPoolExecutor详解
传统的多线程是通过继承Thread类及实现Runnable接口来实现的,每次创建及销毁线程都会消耗资源、响应速度慢,且线程缺乏统一管理,容易出现阻塞的情况,针对以上缺点,线程池就出现了。
线程池是一个创建使用线程并能保存使用过的线程以达到复用的对象,简单的说就是一块缓存了一定数量线程的区域。
1.复用线程:线程执行完不会立刻退出,继续执行其他线程;
2.管理线程:统一分配、管理、控制最大并发数;
1.降低因频繁创建&销毁线程带来的性能开销,复用缓存在线程池中的线程;
2.提高线程执行效率&响应速度,复用线程:响应速度;管理线程:优化线程执行顺序,避免大量线程抢占资源导致阻塞现象;
3.提高对线程的管理度;
线程池的使用也比较简单,流程如下:
接下来通过源码来介绍一下ThreadPoolExecutor内部实现及工作原理。
线程池的最终实现类是ThreadPoolExecutor,通过实现可以一步一步的看到,父接口为Executor:
其他的继承及实现关系就不一一列举了,直接通过以下图来看一下:
从构造方法开始看:
通过以上可以看到,在创建ThreadPoolExecutor时,对传入的参数是有要求的:corePoolSize不能小于0;maximumPoolSize需要大于0,且需要大于等于corePoolSize;keepAliveTime大于0;workQueue、threadFactory都不能为null。
在创建完后就需要执行Runnable了,看以下execute()方法:
在execute()内部主要执行的逻辑如下:
分析点1:如果当前线程数未超过核心线程数,则将runnable作为参数执行addWorker(),true表示核心线程,false表示非核心线程;
分析点2:核心线程满了,如果线程池处于运行状态则往workQueue队列中添加任务,接下来判断是否需要拒绝或者执行addWorker();
分析点3:以上都不满足时 [corePoolSize=0且没有运行的线程,或workQueue已经满了] ,执行addWorker()添加runnable,失败则执行拒绝策略;
总结一下:线程池对线程创建的管理,流程图如下:
在执行addWorker时,主要做了以下两件事:
分析点1:将runnable作为参数创建Worker对象w,然后获取w内部的变量thread;
分析点2:调用start()来启动thread;
在addWorker()内部会将runnable作为参数传给Worker,然后从Worker内部读取变量thread,看一下Worker类的实现:
Worker实现了Runnable接口,在Worker内部,进行了赋值及创建操作,先将execute()时传入的runnable赋值给内部变量firstTask,然后通过ThreadFactory.newThread(this)创建Thread,上面讲到在addWorker内部执行t.start()后,会执行到Worker内部的run()方法,接着会执行runWorker(this),一起看一下:
前面可以看到,runWorker是执行在子线程内部,主要执行了三件事:
分析1:获取当前线程,当执行shutdown()时需要将线程interrupt(),接下来从Worker内部取到firstTask,即execute传入的runnable,接下来会执行;
分析2:while循环,task不空直接执行;否则执行getTask()去获取,不为空直接执行;
分析3:对有效的task执行run(),由于是在子线程中执行,因此直接run()即可,不需要start();
前面看到,在while内部有执行getTask(),一起看一下:
getTask()是从workQueue内部获取接下来需要执行的runnable,内部主要做了两件事:
分析1:先获取到当前正在执行工作的线程数量wc,通过判断allowCoreThreadTimeOut[在创建ThreadPoolExecutor时可以进行设置]及wc > corePoolSize来确定timed值;
分析2:通过timed值来决定执行poll()或者take(),如果WorkQueue中有未执行的线程时,两者作用是相同的,立刻返回线程;如果WorkQueue中没有线程时,poll()有超时返回,take()会一直阻塞;如果allowCoreThreadTimeOut为true,则核心线程在超时时间没有使用的话,是需要退出的;wc > corePoolSize时,非核心线程在超时时间没有使用的话,是需要退出的;
allowCoreThreadTimeOut是可以通过以下方式进行设置的:
如果没有进行设置,那么corePoolSize数量的核心线程会一直存在。
总结一下:ThreadPoolExecutor内部的核心线程如何确保一直存在,不退出?
上面分析已经回答了这个问题,每个线程在执行时会执行runWorker(),而在runWorker()内部有while()循环会判断getTask(),在getTask()内部会对当前执行的线程数量及allowCoreThreadTimeOut进行实时判断,如果工作数量大于corePoolSize且workQueue中没有未执行的线程时,会执行poll()超时退出;如果工作数量不大于corePoolSize且workQueue中没有未执行的线程时,会执行take()进行阻塞,确保有corePoolSize数量的线程阻塞在runWorker()内部的while()循环不退出。
如果需要关闭线程池,需要如何操作呢,看一下shutdown()方法:
以上可以看到,关闭线程池的原理:a. 遍历线程池中的所有工作线程;b. 逐个调用线程的interrupt()中断线程(注:无法响应中断的任务可能永远无法终止)
也可调用shutdownNow()来关闭线程池,二者区别:
shutdown():设置线程池的状态为SHUTDOWN,然后中断所有没有正在执行任务的线程;
shutdownNow():设置线程池的状态为STOP,然后尝试停止所有的正在执行或暂停任务的线程,并返回等待执行任务的列表;
使用建议:一般调用shutdown()关闭线程池;若任务不一定要执行完,则调用shutdownNow();
总结一下:ThreadPoolExecutor在执行execute()及shutdown()时的调用关系,流程图如下:
线程池可以通过Executors来进行不同类型的创建,具体分为四种不同的类型,如下:
可缓存线程池:不固定线程数量,且支持最大为Integer.MAX_VALUE的线程数量:
1、线程数无限制
2、有空闲线程则复用空闲线程,若无空闲线程则新建线程
3、一定程度上减少频繁创建/销毁线程,减少系统开销
固定线程数量的线程池:定长线程池
1、可控制线程最大并发数(同时执行的线程数)
2、超出的线程会在队列中等待。
单线程化的线程池:可以理解为线程数量为1的FixedThreadPool
1、有且仅有一个工作线程执行任务
2、所有任务按照指定顺序执行,即遵循队列的入队出队规则
定时以指定周期循环执行任务
一般来说,等待队列 BlockingQueue 有: ArrayBlockingQueue 、 LinkedBlockingQueue 与 SynchronousQueue 。
假设向线程池提交任务时,核心线程都被占用的情况下:
ArrayBlockingQueue :基于数组的阻塞队列,初始化需要指定固定大小。
当使用此队列时,向线程池提交任务,会首先加入到等待队列中,当等待队列满了之后,再次提交任务,尝试加入队列就会失败,这时就会检查如果当前线程池中的线程数未达到最大线程,则会新建线程执行新提交的任务。所以最终可能出现后提交的任务先执行,而先提交的任务一直在等待。
LinkedBlockingQueue :基于链表实现的阻塞队列,初始化可以指定大小,也可以不指定。
当指定大小后,行为就和 ArrayBlockingQueue一致。而如果未指定大小,则会使用默认的 Integer.MAX_VALUE 作为队列大小。这时候就会出现线程池的最大线程数参数无用,因为无论如何,向线程池提交任务加入等待队列都会成功。最终意味着所有任务都是在核心线程执行。如果核心线程一直被占,那就一直等待。
SynchronousQueue :无容量的队列。
使用此队列意味着希望获得最大并发量。因为无论如何,向线程池提交任务,往队列提交任务都会失败。而失败后如果没有空闲的非核心线程,就会检查如果当前线程池中的线程数未达到最大线程,则会新建线程执行新提交的任务。完全没有任何等待,唯一制约它的就是最大线程数的个数。因此一般配合Integer.MAX_VALUE就实现了真正的无等待。
但是需要注意的是, 进程的内存是存在限制的,而每一个线程都需要分配一定的内存。所以线程并不能无限个。
‘陆’ Android中的线程池
线程池的好处
1、重用线程池中的线程,避免线程的创建与销毁带来的性能开销
2、能有效控制线程池的最大并发数,避免大量线程因抢占资源而导致的阻塞
3、能对线程进行简单的管理,提供定时或者指定间隔时间、循环执行等操作
线程池的概率来自于java的Executor接口,实现类是ThreadPoolExecutor, 它提供一系列的参数来配置线程池,以此构建不同的线程池。Android的线程池分4类,都是通过Executors所提供的工厂方法来得到。
ThreadPoolExecutor有四个构造函数,下面这个是最常用的
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnnable> workQueue, ThreadFactory threadFactory)
corePoolSize
线程池中的核心线程数,默认情况下核心线程会在线程池中一直存活,即使他们处于闲置状态。如果设置ThreadPoolExecutor 中的allowCoreThreadTimeOut = true, 核心线程在等待新任务到来时有超时机制,时间超过keepAliveTime所指定的时间后,核心线程会终止。
maximumPoolSize
最大线程数
keepAliveTime
非核心线程闲置的超时时间,超过这个时间,非核心线程会被回收。核心线程则要看allowCoreThreadTimeOut属性的值。
unit
时间单位
workQueue
线程池中的工作队列
threadFactory
线程工厂,为线程池提供创建新线程的功能。
举个例子,我们常用的okhttp内部也是使用了线程池,它的ThreadPoolExecutor主要是定义在Dispatcher类里面。 使用的是CachedThreadPool。
executorService = ThreadPoolExecutor(0, Int.MAX_VALUE, 60, TimeUnit.SECONDS, SynchronousQueue(), ThreadFactory("okhttp Dispatcher", false))
1、FixedThreadPool
通过Executors的newFixedThreadPool()创建,这是一个线程数量固定的线程池,里面所有的线程都是核心线程。
public static ExecutorService newFixedThreadPool(int nThreads){
return new ThreadPoolExecutor(nThreads, nThreads, 0, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())
}
2、CachedThreadPool
通过Executors的newCacheThreadPool()创建,这是一个线程数量不定的线程池,里面所有的线程都是非核心线程。最大线程数是无限大,当线程池中的线程都处于活动状态时,新的task会创建新的线程来处理,否则就使用空闲的线程处理,所有的线程都是60s的超时时间,超时后会自动回收。
public static ExecutorService newFixedThreadPool(){
return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>())
}
3、ScheledThreadPool
通过Executors的newScheledThreadPool()创建, 核心线程固定,非核心线程无限大,当非核心线程空闲时,会立即被回收。适合做定时任务或者固定周期的重复任务。
public static ExecutorService newScheledThreadPool(int corePoolSize){
return new ThreadPoolExecutor(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.SECONDS, new DelayedWorkQueue())
}
4、SingleThreadExcecutor
通过Executors的newSingleThreadPool()创建,内部只有一个核心线程。
public static ExecutorService newFixedThreadPool(){
return new ThreadPoolExecutor(1, 1, 0, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())
}
课外知识:LinkedBlockingQueue
LinkedBlockingQueue是由链表组成的阻塞队列,内部head 指向队列第一个元素,last指向最后一个元素。入队和出队都会加锁阻塞,都是使用了不同的锁。
DelayedWorkQueue
延时队列,队内元素必须是Delayed的实现类。对内元素会按照Delayed时间进行排序,对内元素只有在delayed时间过期了才能出队。
入队的时候不阻塞队列,出队的时候,如果队列为空或者队列里所有元素都等待时间都没有到期,则该线程进入阻塞状态。
‘柒’ 安卓开发线程和进程讲解
本教程为大家介绍安卓开发中的线程和进程,安卓平台中当首次启动运行一个组件的时候,Android会相应的启动了一个进程。默认的,所有的组件和程序运行在这个进程和线程中,也可以安排组件在其他的进程或者线程中运行。
进程:组件运行的进程由manifest file控制。组件的节点activity, service, receiver, 和 provider 都包含一个 process 属性。这个属性可以设置组件运行的进程:可以配置组件在一个独立进程运行,或者多个组件在同一个进程运行。甚至可以多个程序在一个进程中运行——如果这些程序共享一个User ID并给定同样的权限。 节点也包含 process 属性,用来设置程序中所有组件的默认进程。
所有的组件在此进程的主线程中实例化,系统对这些组件的调用从主线程中分离。并非每个对象都会从主线程中分离。一般来说,响应例如View.onKeyDown()用户操作的方法和通知的方法也在主线程中运行。这就表示,组件被系统调用的时候不应该长时间运行或者阻塞操作(如网络操作或者计算大量数据),因为这样会阻塞进程中的其他组件。可以把这类操作从主线程中分离。
当更加常用的进程无法获取足够内存,Android可能会关闭不常用的进程。下次启动程序的时候会重新启动进程。
当决定哪个进程需要被关闭的时候, Android会考虑哪个对用户更加有用。如Android会倾向于关闭一个长期不显示在界面的旦颂歼进程来支持一个经常显示在界面的进程。
线程:即使为组件分配了不同的进程,有时候也需要再分配线程。比如用户界面需要很快对用户进行响应,因此某些费时的操作,如网络连接、下载或者非常占用服务器时间的操作应该放到其他线程。
线程通过java的标准对象Thread 创建. Android 提供了很多方便的管理线程的方法:— Looper 在线程中运行一个消息循环; Handler 传递一个消息; HandlerThread 创建一个带有消息循环的线程。
远程调用Remote procere calls
Android有一个远程调用(RPCs) 的轻量级机制— 通过这个机制,方法可以在本地调用,在远程执行(在其他进程执行),还可以返回一个值。要实现这个需求,必须分解方法调用,并且所有要传递的数据必须是操作系统可以访问的级别。从本地的进程和内存地址传送到远程的进程和内存地樱正址并在远程处理和返回。返回值必须向相反的方向传递。Android提供了做以上操作的代码,所以开发者可以专注于实现RPC的接口。
一个RPC接口只能包含方法。所有的方法都是同步执行的(直到远程方法返回,本地方法才结束阻塞),没有返回值的时候也是如此。
简单来说,这个机制是这样的:使用IDL (interface definition language)定义你想要实现的接口, aidl 工具可以生成用于java的接口定义,本地和远程都要使用这个定义。它包含2个类,
inner类包含了所有的管理远程程序(符合IDL描述的接口)所需要的代码。所有的inner类实现了IBinder 接口.其中一个在本地使用,可以不管它的代码;另外一个叫做Stub继承了 Binder 类。为了实现远程调用,这个类包含RPC接口。开发者可以继承Stub类来实现需要的方法。
一般来说,远程进程会被一个service管理(因为service可以通知操作系统这个进程的信息并和其他进程通信),它也会包含aidl 工具产生的接口文件,Stub类实现了远处那个方法。服务的客户端只需要aidl 工具产生的接口文件。
以下是如何连接服务和客户端调用:
·服务的客户端(本地)会实现onServiceConnected() 和onServiceDisconnected() 方法,这样,当客户端连接或者断开连接的时候可以获取到通知。通过 bindService() 获取到服务的连接。
· 服务的 onBind() 方法中可以接收或者拒绝连接,取决它收到的intent (intent通过 bindService()方法连接到服务). 如果服务接收了连接,会返回一个Stub类的实例.
· 如果服务接受了连接,Android会调用客户端的onServiceConnected() 方法,模冲并传递一个Ibinder对象(系统管理的Stub类的代理),通过这个代理,客户端可以连接远程的服务。
以上的描述省略很多RPC的机制。请参见Designing a Remote Interface Using AIDL 和 IBinder 类。
线程安全的方法
在某些情况下,方法可能调用不止一个的线程,因此需要注意方法的线程安全。
对于可以远程调用的方法,也要注意这点。当一个调用在Ibinder对象中的方法的程序启动了和Ibinder对象相同的进程,方法就在Ibinder的进程中执行。但是,如果调用者发起另外一个进程,方法在另外一个线程中运行,这个线程在和IBinder对象在一个线程池中;它不会在进程的主线程中运行。例如,一个service从主线程被调用onBind() 方法,onBind() 返回的对象(如实现了RPC的Stub子类)中的方法会被从线程池中调用。因为一个服务可能有多个客户端请求,不止一个线程池会在同一时间调用IBinder的方法。因此IBinder必须线程安全。
简单来说,这个机制是这样的:使用IDL (interface definition language)定义你想要实现的接口, aidl 工具可以生成用于java的接口定义,本地和远程都要使用这个定义。它包含2个类,
inner类包含了所有的管理远程程序(符合IDL描述的接口)所需要的代码。所有的inner类实现了IBinder 接口.其中一个在本地使用,可以不管它的代码;另外一个叫做Stub继承了 Binder 类。为了实现远程调用,这个类包含RPC接口。开发者可以继承Stub类来实现需要的方法。
一般来说,远程进程会被一个service管理(因为service可以通知操作系统这个进程的信息并和其他进程通信),它也会包含aidl 工具产生的接口文件,Stub类实现了远处那个方法。服务的客户端只需要aidl 工具产生的接口文件。
以下是如何连接服务和客户端调用:
·服务的客户端(本地)会实现onServiceConnected() 和onServiceDisconnected() 方法,这样,当客户端连接或者断开连接的时候可以获取到通知。通过 bindService() 获取到服务的连接。
· 服务的 onBind() 方法中可以接收或者拒绝连接,取决它收到的intent (intent通过 bindService()方法连接到服务). 如果服务接收了连接,会返回一个Stub类的实例.
· 如果服务接受了连接,Android会调用客户端的onServiceConnected() 方法,并传递一个Ibinder对象(系统管理的Stub类的代理),通过这个代理,客户端可以连接远程的服务。
线程安全的方法
在某些情况下,方法可能调用不止一个的线程,因此需要注意方法的线程安全。
对于可以远程调用的方法,也要注意这点。当一个调用在Ibinder对象中的方法的程序启动了和Ibinder对象相同的进程,方法就在Ibinder的进程中执行。但是,如果调用者发起另外一个进程,方法在另外一个线程中运行,这个线程在和IBinder对象在一个线程池中;它不会在进程的主线程中运行。例如,一个service从主线程被调用onBind() 方法,onBind() 返回的对象(如实现了RPC的Stub子类)中的方法会被从线程池中调用。因为一个服务可能有多个客户端请求,不止一个线程池会在同一时间调用IBinder的方法。因此IBinder必须线程安全。
简单来说,一个content provider 可以接收其他进程的数据请求。即使ContentResolver和ContentProvider类没有隐藏了管理交互的细节,ContentProvider中响应这些请求的方法(query(), insert(), delete(), update(), and getType() )— 是在content provider的线程池中被调用的,而不是ContentProvider的本身进程。因为这些方法可能是同时从很多线程池运行的,所以这些方法必须要线程安全。