当前位置:首页 » 安卓系统 » android系统音频

android系统音频

发布时间: 2022-09-10 17:00:15

㈠ Android音频播放

最近需要在Android的客户端中使用PCM声音播放和录制,简单学习了一下。有不正确的地方还请指出。

首先有几个概念需要了解一下:采样频率、声道数、采样位数。

采样频率一般是sample rate, 代表的是数字化音频时每秒采样的次数。常见的有44.1KHz(CD品质)、48KHz等。

这个很好理解,单声道Mono就是声音从一个方向传出来;双声道Stereo也叫立体声,声音是从两个方向传来。通常的流行音乐中,仔细听能发现每个声道可能侧重不同的乐曲声部,比如左声道吉他,右声道钢琴,人声似乎两个声道都有,听起来就像站在中间一样。(这里没有考证,随便举例)

每一个采样都是一个数据点,采样位数是指这个数据点使用了几位来记录。AudioTrack类只支持8位和16位的PCM音频。8位就是2的8次方,即256个值;而16位则是2的16次方,有65536个值。

这个在音频的编解码中还是比较常用的。在PCM格式中,1秒钟音频的数据大小是SampleRate×Channel×Bit/8,单位是byte字节。由于PCM本身没有音频帧的概念,所以通过这个公式就能计算出任意时长音频的大小,或者得到任意大小音频的时长。如果规定1个音频帧是“每个声道256个采样”,双声道下就是512个采样,那么1帧的数据量就是256×Channel×Bit/8,同理可以推断出1秒钟有多少音频帧等等。音频帧的概念在各种编解码中各有不同,但计算公式大同小异,这里不展开。

Android中音频的播放使用的是AudioTrack类,具体用法非常简单。
首先设置buffer大小。AudioTrack播放时需要先写入buffer,如果这个buffer没有写满,那么这部分是不会播放的。所以buffer不能设置太小,这样会导致播放不连贯;而buffer也不能设置太小,这样不间断写入会消耗许多CPU资源。AudioTrack自带了getMinBufferSize方法可以给出一个最小buffer,一般用这个值就可以。getMinBufferSize方法三个参数分别是sample rate、channel和bit。

设置完buffer size就可以实例化一个AudioTrack。其中第一个参数streamType是指不同的音频流类型,包括STREAM_MUSIC、STREAM_ALARM、STREAM_VOICE_CALL、STREAM_RING等,是Android对不同音频的分类。中间三个参数很好理解,第四个是buffer size,刚刚计算出来了。最后一个参数mode有两种:MODE_STREAM和MODE_STATIC。前者是以流形式播放,后者则是一次性全部写入然后播放。

调用实例的play()方法就可以开始播放了。不过播放得要有数据吧?要填写数据就要用到write()方法。write方法中第一个参数是一个byte[]类型,是要写入的数据源,可以是从文件流中读取出来的;第二个参数offset是初始位移,即从source的哪个位置开始;第三个参数则是输入长度。

当write方法写满一个AudioTrack的buffer时,就会有声音播放出来了。
当播放完成后记得要把AudioTrack停止并释放。

㈡ android系统支持那些格式的音频文件

1、H.263:低码率视频编码标准,广泛应用于视频会议。

文件格式:

• 3GPP (.3gp)

• MPEG-4 (.mp4)

2、H.264 AVC:和MPEG2和MPEG4 ASP等压缩技术相比,在同等图像质量下,采用H.264技术压缩后的数据量只有MPEG2的1/8,MPEG4的1/3。提供了解决在不稳定网络环境下容易发生的丢包等错误的必要工具。从Android3.0+开始支持。在图像编码效率上,H.264算法最为领先,MPEG-4和H.263算法基本相同。

文件格式:

• 3GPP (.3gp)

• MPEG-4 (.mp4)

• MPEG-TS (.ts, AAC audio only, not seekable, Android 3.0+)

3、MPEG-4 SP:一种以矩形帧作为对象的编码形式,是从H.263、MPEG1和MPEG2继承而来的编码标准。

文件格式:3GPP (.3gp)

4、VP8:Google亲妈推出的,但压缩率比H.264差很多,Android2.3.3+。

文件格式:

• WebM(.webm)

• Matroska (.mkv, Android 4.0+) 注:开源,基于html5标准

㈢ Android播放音频

播放音频用到MediaPlayer类,具体用法如下:

我们写一个简单的例子,播放手机存储的根目录下motto.mp3文件。定义三个按钮play、pause、stop来控制播放。

另外,本范例涉及到SD卡的读取,还要在在Manifest.xml注册写SD卡的权限。

㈣ Android怎样对音频进行倍速播放

向各位推荐网络网盘的会员专享功能“音频倍速”,它可以五种倍速模式随意转换,满足各种用户的需求。

步骤一:打开网络网盘APP,点击“文件”

安卓系统为什么不能播放cd音乐

因为CD储存的音乐文件是cda格式,这个格式只有CD播放机才能识别。
你需要将从CD提取出来的音频文件,转换一下格式才可以在手机里播放。最好保存为WAV格式,这个格式的音乐音质比较好。如果你的手机不支持WAV格式,安装一个第三方App就可以了。
CD唱片亦称激光唱片。一种用数字音频技术记录音响信息的媒体。与传统的密纹(LP)唱片不同,靠聚焦极好的激光束照射到分布着平凹不同的数码轨迹的唱片上,用光敏器件接收反射光,即可转换成与平凹相对应的脉冲信号,经过处理形成立体声输出。CD唱片的音响动态范围大,信噪比高,左右声道的隔离度好,失真度低,抖晃率几乎为零。此外,CD唱片的记录密度较高,仅在直径为12厘米的唱片上,单面即可记录60分钟的音乐节目。

㈥ android怎么调用系统声音

Android中手机声音调节步骤:

a、通过系统服务获得声音管理器:

AudioManager audioManager = (AudioManager)getSystemService(Service.AUDIO_SERVICE);

b、根据实际需要调用适当的方法:(常用方法)

audioManager.adjustStreamVolume(int streamType, int direction, int flags);

streamType:声音类型,可取的为STREAM_VOICE_CALL(打电话时的声音), STREAM_SYSTEM(Android系统声音), STREAM_RING(电话铃响), STREAM_MUSIC(音乐声音)or STREAM_ALARM(警告声音)。

direction:调整音量的方向,可取为ADJUST_LOWER(调低音量), ADJUST_RAISE(调高音量), or ADJUST_SAME(保持先前音量)。

flags:可选标志位(如要显示出音量调节UI,使用如下flag:AudioManager.FLAG_SHOW_UI)。

audioManager.setStreamMute(int streamType, boolean state);设置指定声音类型(streamType)是否为静音。如果state为true,则设置为静音;否则,不设置为静音。

audioManager.setRingerMode(int ringerMode);

设置铃音模式,可取值为RINGER_MODE_NORMAL(铃音正常模式), RINGER_MODE_SILENT(铃音静音模式), or RINGER_MODE_VIBRATE(铃音震动模式,即铃音为静音,启动震动)。

audioManager.setMode(int mode);

设置声音模式,可取值为MODE_NORMAL(正常模式,即在没有铃音与电话的情况), MODE_RINGTONE(铃响模式), MODE_IN_CALL(接通电话模式)or MODE_IN_COMMUNICATION(通话模式)。

注意:声音的调节是没有权限要求的。

㈦ Android -- 音视频基础知识

帧,是视频的一个基本概念,表示一张画面,如上面的翻页动画书中的一页,就是一帧。一个视频就是由许许多多帧组成的。

帧率,即单位时间内帧的数量,单位为:帧/秒 或fps(frames per second)。一秒内包含多少张图片,图片越多,画面越顺滑,过渡越自然。 帧率的一般以下几个典型值:

24/25 fps:1秒 24/25 帧,一般的电影帧率。

30/60 fps:1秒 30/60 帧,游戏的帧率,30帧可以接受,60帧会感觉更加流畅逼真。

85 fps以上人眼基本无法察觉出来了,所以更高的帧率在视频里没有太大意义。

这里我们只讲常用到的两种色彩空间。

RGB的颜色模式应该是我们最熟悉的一种,在现在的电子设备中应用广泛。通过R G B三种基础色,可以混合出所有的颜色。

这里着重讲一下YUV,这种色彩空间并不是我们熟悉的。这是一种亮度与色度分离的色彩格式。

早期的电视都是黑白的,即只有亮度值,即Y。有了彩色电视以后,加入了UV两种色度,形成现在的YUV,也叫YCbCr。

Y:亮度,就是灰度值。除了表示亮度信号外,还含有较多的绿色通道量。

U:蓝色通道与亮度的差值。

V:红色通道与亮度的差值。

音频数据的承载方式最常用的是 脉冲编码调制 ,即 PCM

在自然界中,声音是连续不断的,是一种模拟信号,那怎样才能把声音保存下来呢?那就是把声音数字化,即转换为数字信号。

我们知道声音是一种波,有自己的振幅和频率,那么要保存声音,就要保存声音在各个时间点上的振幅。

而数字信号并不能连续保存所有时间点的振幅,事实上,并不需要保存连续的信号,就可以还原到人耳可接受的声音。

根据奈奎斯特采样定理:为了不失真地恢复模拟信号,采样频率应该不小于模拟信号频谱中最高频率的2倍。

根据以上分析,PCM的采集步骤分为以下步骤:

采样率,即采样的频率。

上面提到,采样率要大于原声波频率的2倍,人耳能听到的最高频率为20kHz,所以为了满足人耳的听觉要求,采样率至少为40kHz,通常为44.1kHz,更高的通常为48kHz。

采样位数,涉及到上面提到的振幅量化。波形振幅在模拟信号上也是连续的样本值,而在数字信号中,信号一般是不连续的,所以模拟信号量化以后,只能取一个近似的整数值,为了记录这些振幅值,采样器会采用一个固定的位数来记录这些振幅值,通常有8位、16位、32位。

位数越多,记录的值越准确,还原度越高。

最后就是编码了。由于数字信号是由0,1组成的,因此,需要将幅度值转换为一系列0和1进行存储,也就是编码,最后得到的数据就是数字信号:一串0和1组成的数据。

整个过程如下:

声道数,是指支持能不同发声(注意是不同声音)的音响的个数。 单声道:1个声道
双声道:2个声道
立体声道:默认为2个声道
立体声道(4声道):4个声道

码率,是指一个数据流中每秒钟能通过的信息量,单位bps(bit per second)

码率 = 采样率 * 采样位数 * 声道数

这里的编码和上面音频中提到的编码不是同个概念,而是指压缩编码。

我们知道,在计算机的世界中,一切都是0和1组成的,音频和视频数据也不例外。由于音视频的数据量庞大,如果按照裸流数据存储的话,那将需要耗费非常大的存储空间,也不利于传送。而音视频中,其实包含了大量0和1的重复数据,因此可以通过一定的算法来压缩这些0和1的数据。

特别在视频中,由于画面是逐渐过渡的,因此整个视频中,包含了大量画面/像素的重复,这正好提供了非常大的压缩空间。

因此,编码可以大大减小音视频数据的大小,让音视频更容易存储和传送。

视频编码格式有很多,比如H26x系列和MPEG系列的编码,这些编码格式都是为了适应时代发展而出现的。

其中,H26x(1/2/3/4/5)系列由ITU(International Telecommunication Union)国际电传视讯联盟主导

MPEG(1/2/3/4)系列由MPEG(Moving Picture Experts Group, ISO旗下的组织)主导。

当然,他们也有联合制定的编码标准,那就是现在主流的编码格式H264,当然还有下一代更先进的压缩编码标准H265。

H264是目前最主流的视频编码标准,所以我们后续的文章中主要以该编码格式为基准。

H264由ITU和MPEG共同定制,属于MPEG-4第十部分内容。

我们已经知道,视频是由一帧一帧画面构成的,但是在视频的数据中,并不是真正按照一帧一帧原始数据保存下来的(如果这样,压缩编码就没有意义了)。

H264会根据一段时间内,画面的变化情况,选取一帧画面作为完整编码,下一帧只记录与上一帧完整数据的差别,是一个动态压缩的过程。

在H264中,三种类型的帧数据分别为

I帧:帧内编码帧。就是一个完整帧。

P帧:前向预测编码帧。是一个非完整帧,通过参考前面的I帧或P帧生成。

B帧:双向预测内插编码帧。参考前后图像帧编码生成。B帧依赖其前最近的一个I帧或P帧及其后最近的一个P帧。

全称:Group of picture。指一组变化不大的视频帧。

GOP的第一帧成为关键帧:IDR

IDR都是I帧,可以防止一帧解码出错,导致后面所有帧解码出错的问题。当解码器在解码到IDR的时候,会将之前的参考帧清空,重新开始一个新的序列,这样,即便前面一帧解码出现重大错误,也不会蔓延到后面的数据中。

DTS全称:Decoding Time Stamp。标示读入内存中数据流在什么时候开始送入解码器中进行解码。也就是解码顺序的时间戳。

PTS全称:Presentation Time Stamp。用于标示解码后的视频帧什么时候被显示出来。

前面我们介绍了RGB和YUV两种图像色彩空间。H264采用的是YUV。

YUV存储方式分为两大类:planar 和 packed。

planar如下:

packed如下:

上面说过,由于人眼对色度敏感度低,所以可以通过省略一些色度信息,即亮度共用一些色度信息,进而节省存储空间。因此,planar又区分了以下几种格式:YUV444、 YUV422、YUV420。

YUV 4:4:4采样,每一个Y对应一组UV分量。

YUV 4:2:2采样,每两个Y共用一组UV分量。

YUV 4:2:0采样,每四个Y共用一组UV分量。

其中,最常用的就是YUV420。

YUV420属于planar存储方式,但是又分两种类型:

YUV420P:三平面存储。数据组成为YYYYYYYYUUVV(如I420)或YYYYYYYYVVUU(如YV12)。

YUV420SP:两平面存储。分为两种类型YYYYYYYYUVUV(如NV12)或YYYYYYYYVUVU(如NV21)

原始的PCM音频数据也是非常大的数据量,因此也需要对其进行压缩编码。

和视频编码一样,音频也有许多的编码格式,如:WAV、MP3、WMA、APE、FLAC等等,音乐发烧友应该对这些格式非常熟悉,特别是后两种无损压缩格式。

但是,我们今天的主角不是他们,而是另外一个叫AAC的压缩格式。

AAC是新一代的音频有损压缩技术,一种高压缩比的音频压缩算法。在MP4视频中的音频数据,大多数时候都是采用AAC压缩格式。

AAC格式主要分为两种:ADIF、ADTS。

ADIF:Audio Data Interchange Format。音频数据交换格式。这种格式的特征是可以确定的找到这个音频数据的开始,不需进行在音频数据流中间开始的解码,即它的解码必须在明确定义的开始处进行。这种格式常用在磁盘文件中。

ADTS:Audio Data Transport Stream。音频数据传输流。这种格式的特征是它是一个有同步字的比特流,解码可以在这个流中任何位置开始。它的特征类似于mp3数据流格式。

ADIF数据格式:

ADTS 一帧 数据格式(中间部分,左右省略号为前后数据帧):

AAC内部结构也不再赘述,可以参考AAC 文件解析及解码流程

细心的读者可能已经发现,前面我们介绍的各种音视频的编码格式,没有一种是我们平时使用到的视频格式,比如:mp4、rmvb、avi、mkv、mov...

没错,这些我们熟悉的视频格式,其实是包裹了音视频编码数据的容器,用来把以特定编码标准编码的视频流和音频流混在一起,成为一个文件。

例如:mp4支持H264、H265等视频编码和AAC、MP3等音频编码。

我们在一些播放器中会看到,有硬解码和软解码两种播放形式给我们选择,但是我们大部分时候并不能感觉出他们的区别,对于普通用户来说,只要能播放就行了。

那么他们内部究竟有什么区别呢?

在手机或者PC上,都会有CPU、GPU或者解码器等硬件。通常,我们的计算都是在CPU上进行的,也就是我们软件的执行芯片,而GPU主要负责画面的显示(是一种硬件加速)。

所谓软解码,就是指利用CPU的计算能力来解码,通常如果CPU的能力不是很强的时候,一则解码速度会比较慢,二则手机可能出现发热现象。但是,由于使用统一的算法,兼容性会很好。

硬解码,指的是利用手机上专门的解码芯片来加速解码。通常硬解码的解码速度会快很多,但是由于硬解码由各个厂家实现,质量参差不齐,非常容易出现兼容性问题。

MediaCodec 是Android 4.1(api 16)版本引入的编解码接口,是所有想在Android上开发音视频的开发人员绕不开的坑。

由于Android碎片化严重,虽然经过多年的发展,Android硬解已经有了很大改观,但实际上各个厂家实现不同, 还是会有一些意想不到的坑。

相对于FFmpeg,Android原生硬解码还是相对容易入门一些,所以接下来,我将会从MediaCodec入手,讲解如何实现视频的编解码,以及引入OpenGL实现对视频的编辑,最后才引入FFmpeg来实现软解,算是一个比较常规的音视频开发入门流程吧。

㈧ android5.0系统音频是否还有src的问题

一直以来,Android系统由于底层语言的问题,在音频播放上存在一个漏洞,即48khz采样率转换为44.1khz会被劣质SRC。这种被劣质SRC的问题,使得音频信号在安卓设备里受到了扭曲和损耗,产生大量噪波,立体声播放层次等这些指标全面受损。而用户需求较多的高品质音乐母生带、高清视频、游戏等的音频都是高于44.1khz的采样率;因此有很多用户不厌其烦抱怨安卓机器的音质失真和受损问题。
通过一段标准音频理论状态下的光谱图,我们可以发现正常安卓机型在播放48khz音频时,光谱图可谓惨不忍睹。主信号周围出现了巨量的噪波,主信号基本难以分辨,因此难免会出现声道串声,杂音,变调等问题。
近期智能手机厂商vivo发布了其自主研发的音频技术VRS。据了解,vivo的VRS技术声称完全解决了上述困扰安卓系统音频播放的梦魇,并得到了国家专利受理。
而应用了VRS音频技术的vivo V1智能手机在播放48khz音频时,完全不存在任何问题,其主信号的保真度接近于理论完美状态。虽然信号源质量并不完全代表最后的听感,但我们也知道,有了接近无损的信号源,是能够取得优秀播放效果的前提。可见,VRS技术的出现,表明vivo智能手机在致力于追求产品完美的音质享受探索又迈上了一个新的高度。

热点内容
计算机等级考试数据库 发布:2025-01-10 13:40:51 浏览:99
华为双摄算法 发布:2025-01-10 13:37:06 浏览:46
微信公众平台营销源码 发布:2025-01-10 13:22:09 浏览:611
求职数据库 发布:2025-01-10 13:05:43 浏览:443
编程中是什么意思 发布:2025-01-10 12:50:38 浏览:674
jsp的数据库连接配置 发布:2025-01-10 12:49:03 浏览:488
oracle数据库代码 发布:2025-01-10 12:42:11 浏览:43
电脑tb账户密码是多少 发布:2025-01-10 12:34:38 浏览:352
方舟如何进私人服务器 发布:2025-01-10 12:33:01 浏览:353
桌球游戏源码 发布:2025-01-10 12:32:44 浏览:553