当前位置:首页 » 安卓系统 » android共享内存

android共享内存

发布时间: 2022-09-01 07:13:07

① android 为什么不能用shmget

其实Anroid kernel本身在核心态是支持System V的功能,但是bionic这一层进行了处理,例如共享内存这块bionic就把glibc的shmget等函数给剥除了,而采用android匿名共享内存方式。今天研究了一下bionic,发现这里其实还是保留了glibc的很多东西,只是把用户态到内核函数的调用通路给断开了。

② 为什么Android要采用Binder作为IPC机制

1)从性能的角度
数据拷贝次数:Binder数据拷贝只需要一次,而管道、消息队列、Socket都需要2次,但共享内存方式一次内存拷贝都不需要;从性能角度看,Binder性能仅次于共享内存。

(2)从稳定性的角度
Binder是基于C/S架构的,简单解释下C/S架构,是指客户端(Client)和服务端(Server)组成的架构,Client端有什么需求,直接发送给Server端去完成,架构清晰明朗,Server端与Client端相对独立,稳定性较好;而共享内存实现方式复杂,没有客户与服务端之别, 需要充分考虑到访问临界资源的并发同步问题,否则可能会出现死锁等问题;从这稳定性角度看,Binder架构优越于共享内存。

仅仅从以上两点,各有优劣,还不足以支撑google去采用binder的IPC机制,那么更重要的原因是:

(3)从安全的角度
传统linux IPC的接收方无法获得对方进程可靠的UID/PID,从而无法鉴别对方身份;而Android作为一个开放的开源体系,拥有非常多的开发平台,App来源甚广,因此手机的安全显得额外重要;对于普通用户,绝不希望从App商店下载偷窥隐射数据、后台造成手机耗电等等问题,传统Linux IPC无任何保护措施,完全由上层协议来确保。

Android为每个安装好的应用程序分配了自己的UID,故进程的UID是鉴别进程身份的重要标志,前面提到C/S架构,Android系统中对外只暴露Client端,Client端将任务发送给Server端,Server端会根据权限控制策略,判断UID/PID是否满足访问权限,目前权限控制很多时候是通过弹出权限询问对话框,让用户选择是否运行。Android 6.0,也称为Android M,在6.0之前的系统是在App第一次安装时,会将整个App所涉及的所有权限一次询问,只要留意看会发现很多App根本用不上通信录和短信,但在这一次性权限权限时会包含进去,让用户拒绝不得,因为拒绝后App无法正常使用,而一旦授权后,应用便可以胡作非为。

针对这个问题,google在Android M做了调整,不再是安装时一并询问所有权限,而是在App运行过程中,需要哪个权限再弹框询问用户是否给相应的权限,对权限做了更细地控制,让用户有了更多的可控性,但同时也带来了另一个用户诟病的地方,那也就是权限询问的弹框的次数大幅度增多。对于Android M平台上,有些App开发者可能会写出让手机异常频繁弹框的App,企图直到用户授权为止,这对用户来说是不能忍的,用户最后吐槽的可不光是App,还有Android系统以及手机厂商,有些用户可能就跳果粉了,这还需要广大Android开发者以及手机厂商共同努力,共同打造安全与体验俱佳的Android手机。

③ 为什么 Android 要采用 Binder 作为 IPC 机制

Android是基于linux内核的。所以linux支持的IPC,android都用到了。比如命名管道,共享内存。 除此外,android还使用了一套自己独特的IPC方式 binder. 主要用于2个进程间的远程调用。但是这里就牵扯远程调用如何传递参数,如何回传结果。 这需要调用者对数据进行打包和解包,是一个繁琐的过程。为此,android引入了aidl(android interface description launguage). 开发人员定义好aidl,android会根据aidl的描述生产stub代码,帮助调用者对数据打包,解包。开发人员所要做的事是继承stub代码,实现stub代码中的函数。这些函数是你在aidl中定义的。

④ android为什么不直接使用linux的共享内存机制来完成进程间的通讯,而是使用AIDL来公开服务接口

Android貌似共享用的底层是Binder驱动,这个驱动可以避免很多Linux下会出现共享内存的问题,具体我也没分析过嘿嘿

⑤ Android中mmap原理及应用简析

mmap是Linux中常用的系统调用API,用途广泛,Android中也有不少地方用到,比如匿名共享内存,Binder机制等。本文简单记录下Android中mmap调用流程及原理。mmap函数原型如下:

几个重要参数

返回值是void *类型,分配成功后,被映射成虚拟内存地址。

mmap属于系统调用,用户控件间接通过swi指令触发软中断,进入内核态(各种环境的切换),进入内核态之后,便可以调用内核函数进行处理。 mmap->mmap64->__mmap2->sys_mmap2-> sys_mmap_pgoff ->do_mmap_pgoff

而 __NR_mmap在系统函数调用表中对应的减值如下:

通过系统调用,执行swi软中断,进入内核态,最终映射到call.S中的内核函数:sys_mmap2

sys_mmap2最终通过sys_mmap_pgoff在内核态完成后续逻辑。

sys_mmap_pgoff通过宏定义实现

进而调用do_mmap_pgoff:

get_unmapped_area用于为用户空间找一块内存区域,

current->mm->get_unmapped_area一般被赋值为arch_get_unmapped_area_topdown,

先找到合适的虚拟内存(用户空间),几经周转后,调用相应文件或者设备驱动中的mmap函数,完成该设备文件的mmap,至于如何处理处理虚拟空间,要看每个文件的自己的操作了。

这里有个很关键的结构体

它是文件驱动操作的入口,在open的时候,完成file_operations的绑定,open流程跟mmap类似

先通过get_unused_fd_flags获取个未使用的fd,再通过do_file_open完成file结构体的创建及初始化,最后通过fd_install完成fd与file的绑定。

重点看下path_openat:

拿Binder设备文件为例子,在注册该设备驱动的时候,对应的file_operations已经注册好了,

open的时候,只需要根根inode节点,获取到file_operations既可,并且,在open成功后,要回调file_operations中的open函数

open后,就可以利用fd找到file,之后利用file中的file_operations *f_op调用相应驱动函数,接着看mmap。

Binder机制中mmap的最大特点是一次拷贝即可完成进程间通信 。Android应用在进程启动之初会创建一个单例的ProcessState对象,其构造函数执行时会同时完成binder mmap,为进程分配一块内存,专门用于Binder通信,如下。

第一个参数是分配地址,为0意味着让系统自动分配,流程跟之前分子类似,先在用户空间找到一块合适的虚拟内存,之后,在内核空间也找到一块合适的虚拟内存,修改两个控件的页表,使得两者映射到同一块物力内存。

Linux的内存分用户空间跟内核空间,同时页表有也分两类,用户空间页表跟内核空间页表,每个进程有一个用户空间页表,但是系统只有一个内核空间页表。而Binder mmap的关键是:也更新用户空间对应的页表的同时也同步映射内核页表,让两个页表都指向同一块地址,这样一来,数据只需要从A进程的用户空间,直接拷贝拷贝到B所对应的内核空间,而B多对应的内核空间在B进程的用户空间也有相应的映射,这样就无需从内核拷贝到用户空间了。

binder_update_page_range完成了内存分配、页表修改等关键操作:

可以看到,binder一次拷贝的关键是,完成内存的时候,同时完成了内核空间跟用户空间的映射,也就是说,同一份物理内存,既可以在用户空间,用虚拟地址访问,也可以在内核空间用虚拟地址访问。

普通文件的访问方式有两种:第一种是通过read/write系统调访问,先在用户空间分配一段buffer,然后,进入内核,将内容从磁盘读取到内核缓冲,最后,拷贝到用户进程空间,至少牵扯到两次数据拷贝;同时,多个进程同时访问一个文件,每个进程都有一个副本,存在资源浪费的问题。

另一种是通过mmap来访问文件,mmap()将文件直接映射到用户空间,文件在mmap的时候,内存并未真正分配,只有在第一次读取/写入的时候才会触发,这个时候,会引发缺页中断,在处理缺页中断的时候,完成内存也分配,同时也完成文件数据的拷贝。并且,修改用户空间对应的页表,完成到物理内存到用户空间的映射,这种方式只存在一次数据拷贝,效率更高。同时多进程间通过mmap共享文件数据的时候,仅需要一块物理内存就够了。

共享内存是在普通文件mmap的基础上实现的,其实就是基于tmpfs文件系统的普通mmap,有机会再分析,不再啰嗦。

Android中mmap原理及应用简析

仅供参考,欢迎指正

⑥ android 为什么用aidl

AIDL:Android Interface Definition Language,即Android接口定义语言。

Android系统中的进程之间不能共享内存,因此,需要提供一些机制在不同进程之间进行数据通信。

为了使其他的应用程序也可以访问本应用程序提供的服务,Android系统采用了远程过程调用(Remote
Procere Call,RPC)方式来实现。与很多其他的基于RPC的解决方案一样,Android使用一种接口定义语言(Interface
Definition
Language,IDL)来公开服务的接口。我们知道4个Android应用程序组件中的3个(Activity、BroadcastReceiver
和ContentProvider)都可以进行跨进程访问,另外一个Android应用程序组件Service同样可以。因此,可以将这种可以跨进程访问
的服务称为AIDL(Android Interface Definition Language)服务。

⑦ android Binder具体是干什么用的

Binder主要能提供以下一些功能:
用驱动程序来推进进程间的通信。
通过共享内存来提高性能。
为进程请求分配每个进程的线程池。
针对系统中的对象引入了引用计数和跨进程的对象引用映射。
进程间同步调用。

Android Binder设计与实现 – 设计篇:
目前linux支持的IPC包括传统的管道、System V IPC、即消息队列/共享内存/信号量,以及socket中只有socket支持Client-Server的通信方式。
当然也可以在这些底层机制上架设一套协议来实现Client-Server通信,但这样增加了系统的复杂性,在手机这种条件复杂,资源稀缺的环境下可靠性也难以保证。
另一方面是传输性能:
socket作为一款通用接口,其传输效率低,开销大,主要用在跨网络的进程间通信和本机上进程间的低速通信。
消息队列和管道采用存储-转发方式,即数据先从发送方缓存区拷贝到内核开辟的缓存区中,然后再从内核缓存区拷贝到接收方缓存区,
至少有两次拷贝过程。共享内存虽然无需拷贝,但控制复杂,难以使用。
还有一点是出于安全性考虑:

Android作为一个开放式,拥有众多开发者的平台,应用程序的来源广泛,确保智能终端的安全是非常重要的。

终端用户不希望从网上下载的程序在不知情的情况下偷窥隐私数据,连接无线网络,长期操作底层设备导致电池很快耗尽等等。传统IPC没有任何

安全措施,完全依赖上层协议来确保。首先传统IPC的接收方无法获得对方进程可靠的UID/PID(用户ID/进程ID),从而无法鉴别对方身份。

Android为每个安装好的应用程序分配了自己的UID,故进程的UID是鉴别进程身份的重要标志。使用传统IPC只能由用户在数据包里填入UID/PID,

但这样不可靠,容易被恶意程序利用。可靠的身份标记只有由IPC机制本身在内核中添加。其次传统IPC访问接入点是开放的,无法建立私有通道。

比如命名管道的名称、system V的键值、socket的ip地址或文件名都是开放的,只要知道这些接入点的程序都可以和对端建立连接,不管怎样都无法

阻止恶意程序通过猜测接收方地址获得连接。

基于以上原因,Android需要建立一套新的IPC机制来满足系统对通信方式,传输性能和安全性的要求,这就是Binder。

Binder基于 Client-Server通信模式,传输过程只需一次拷贝,为发送发添加UID/PID身份,既支持实名Binder也支持匿名Binder,安全性高。

面向对象的 Binder IPC:

面向对象思想的引入将进程间通信转化为通过对某个Binder对象的引用调用该对象的方法,而其独特之处在于Binder对象是一个

可以跨进程引用的对象,它的实体位于一个进程中,而它的引用却遍布于系统的各个进程之中。最诱人的是,这个引用和java里引用

一样既可以是强类型,也可以是弱类型,而且可以从一个进程传给其它进程,让大家都能访问同一Server,就像将一个对象或引用赋

值给另一个引用一样。Binder模糊了进程边界,淡化了进程间通信过程,整个系统仿佛运行于同一个面向对象的程序之中。

面向对象只是针对应用程序而言,对于Binder驱动和内核其它模块一样使用C语言实现,没有类和对象的概念。

Binder驱动为面向对象的进程间通信提供底层支持。

⑧ 篇文章会先对照binder机制与linux的通信机制的区别,了解为什么android会另起炉灶

1)从性能的角度
数据拷贝次数:Binder数据拷贝只需要一次,而管道、消息队列、Socket都需要2次,但共享内存方式一次内存拷贝都不需要;从性能角度看,Binder性能仅次于共享内存。

(2)从稳定性的角度
Binder是基于C/S架构的,简单解释下C/S架构,是指客户端(Client)和服务端(Server)组成的架构,Client端有什么需求,直接发送给Server端去完成,架构清晰明朗,Server端与Client端相对独立,稳定性较好;而共享内存实现方式复杂,没有客户与服务端之别, 需要充分考虑到访问临界资源的并发同步问题,否则可能会出现死锁等问题;从这稳定性角度看,Binder架构优越于共享内存。

仅仅从以上两点,各有优劣,还不足以支撑google去采用binder的IPC机制,那么更重要的原因是:

(3)从安全的角度
传统Linux IPC的接收方无法获得对方进程可靠的UID/PID,从而无法鉴别对方身份;而Android作为一个开放的开源体系,拥有非常多的开发平台,App来源甚广,因此手机的安全显得额外重要;对于普通用户,绝不希望从App商店下载偷窥隐射数据、后台造成手机耗电等等问题,传统Linux IPC无任何保护措施,完全由上层协议来确保。

Android为每个安装好的应用程序分配了自己的UID,故进程的UID是鉴别进程身份的重要标志,前面提到C/S架构,Android系统中对外只暴露Client端,Client端将任务发送给Server端,Server端会根据权限控制策略,判断UID/PID是否满足访问权限,目前权限控制很多时候是通过弹出权限询问对话框,让用户选择是否运行。Android 6.0,也称为Android M,在6.0之前的系统是在App第一次安装时,会将整个App所涉及的所有权限一次询问,只要留意看会发现很多App根本用不上通信录和短信,但在这一次性权限权限时会包含进去,让用户拒绝不得,因为拒绝后App无法正常使用,而一旦授权后,应用便可以胡作非为。

针对这个问题,google在Android M做了调整,不再是安装时一并询问所有权限,而是在App运行过程中,需要哪个权限再弹框询问用户是否给相应的权限,对权限做了更细地控制,让用户有了更多的可控性,但同时也带来了另一个用户诟病的地方,那也就是权限询问的弹框的次数大幅度增多。对于Android M平台上,有些App开发者可能会写出让手机异常频繁弹框的App,企图直到用户授权为止,这对用户来说是不能忍的,用户最后吐槽的可不光是App,还有Android系统以及手机厂商,有些用户可能就跳果粉了,这还需要广大Android开发者以及手机厂商共同努力,共同打造安全与体验俱佳的Android手机。

Android中权限控制策略有SELinux等多方面手段,下面列举从Binder的一个角度的权限控制:
Android源码的Binder权限是如何控制? -Gityuan的回答

传统IPC只能由用户在数据包里填入UID/PID;另外,可靠的身份标记只有由IPC机制本身在内核中添加。其次传统IPC访问接入点是开放的,无法建立私有通道。从安全角度,Binder的安全性更高。

说到这,可能有人要反驳,Android就算用了Binder架构,而现如今Android手机的各种流氓软件,不就是干着这种偷窥隐射,后台偷偷跑流量的事吗?没错,确实存在,但这不能说Binder的安全性不好,因为Android系统仍然是掌握主控权,可以控制这类App的流氓行为,只是对于该采用何种策略来控制,在这方面android的确存在很多有待进步的空间,这也是google以及各大手机厂商一直努力改善的地方之一。在Android 6.0,google对于app的权限问题作为较多的努力,大大收紧的应用权限;另外,在Google举办的Android Bootcamp 2016大会中,google也表示在Android 7.0 (也叫Android N)的权限隐私方面会进一步加强加固,比如SELinux,Memory safe language(还在research中)等等,在今年的5月18日至5月20日,google将推出Android N。

(4)从语言层面的角度
大家多知道Linux是基于C语言(面向过程的语言),而Android是基于Java语言(面向对象的语句),而对于Binder恰恰也符合面向对象的思想,将进程间通信转化为通过对某个Binder对象的引用调用该对象的方法,而其独特之处在于Binder对象是一个可以跨进程引用的对象,它的实体位于一个进程中,而它的引用却遍布于系统的各个进程之中。可以从一个进程传给其它进程,让大家都能访问同一Server,就像将一个对象或引用赋值给另一个引用一样。Binder模糊了进程边界,淡化了进程间通信过程,整个系统仿佛运行于同一个面向对象的程序之中。从语言层面,Binder更适合基于面向对象语言的Android系统,对于Linux系统可能会有点“水土不服”。

另外,Binder是为Android这类系统而生,而并非Linux社区没有想到Binder IPC机制的存在,对于Linux社区的广大开发人员,我还是表示深深佩服,让世界有了如此精湛而美妙的开源系统。也并非Linux现有的IPC机制不够好,相反地,经过这么多优秀工程师的不断打磨,依然非常优秀,每种Linux的IPC机制都有存在的价值,同时在Android系统中也依然采用了大量Linux现有的IPC机制,根据每类IPC的原理特性,因时制宜,不同场景特性往往会采用其下最适宜的。比如在Android OS中的Zygote进程的IPC采用的是Socket(套接字)机制,Android中的Kill Process采用的signal(信号)机制等等。而Binder更多则用在system_server进程与上层App层的IPC交互。

(5) 从公司战略的角度

总所周知,Linux内核是开源的系统,所开放源代码许可协议GPL保护,该协议具有“病毒式感染”的能力,怎么理解这句话呢?受GPL保护的Linux Kernel是运行在内核空间,对于上层的任何类库、服务、应用等运行在用户空间,一旦进行SysCall(系统调用),调用到底层Kernel,那么也必须遵循GPL协议。

而Android 之父 Andy Rubin对于GPL显然是不能接受的,为此,Google巧妙地将GPL协议控制在内核空间,将用户空间的协议采用Apache-2.0协议(允许基于Android的开发商不向社区反馈源码),同时在GPL协议与Apache-2.0之间的Lib库中采用BSD证授权方法,有效隔断了GPL的传染性,仍有较大争议,但至少目前缓解Android,让GPL止步于内核空间,这是Google在GPL Linux下 开源与商业化共存的一个成功典范。

⑨ android 进程间的通信(IPC)方式有哪些

Android为了屏蔽进程的概念,利用不同的组件[Activity、Service]来表示进程之间的通信!组件间通信的核心机制是Intent,通过Intent可以开启一个Activity或Service,不论这个Activity或Service是属于当前应用还是其它应用的。
一、Intent包含两部分:
1、目的[action]--要往哪里去
2、内容[category、data]--路上带了些什么,区分性数据或内容性数据
二、Intent类型:
1、显式--直接指定消息目的地,只适合同一进程内的不同组件之间通信
new Intent(this,Target.class)
2、隐式--AndroidMainifest.xml中注册,一般用于跨进程通信
new Intent(String action)

IPC机制:有了Intent这种基于消息的进程内或进程间通信模型,我们就可以通过Intent去开启一个Service,可以通过Intent跳转到另一个Activity,不论上面的Service或Activity是在当前进程还是其它进程内即不论是当前应用还是其它应用的Service或Activity,通过消息机制都可以进行通信!

热点内容
搭建国外服务器需要多少钱 发布:2025-01-12 13:08:01 浏览:826
我的世界mod服务器开荒 发布:2025-01-12 13:07:10 浏览:756
sql优化书 发布:2025-01-12 13:07:09 浏览:454
高校网站服务器搭建与维护论文 发布:2025-01-12 13:06:31 浏览:710
sqlserver实例没有 发布:2025-01-12 12:57:18 浏览:251
代码文件服务器地址怎么写 发布:2025-01-12 12:50:47 浏览:759
java中方法与 发布:2025-01-12 12:50:13 浏览:654
如何快速查找c语言编译时的错 发布:2025-01-12 12:49:56 浏览:31
看门狗上传病毒 发布:2025-01-12 12:32:54 浏览:326
网络登录服务器需要获取什么信息 发布:2025-01-12 12:17:32 浏览:892