安卓hal层代码在哪里
1. android app怎么调用hal层函数通过ca 去tee环境调用ta
快快
2. android ndk 开发只写jni层的代码吗不能写hal层的代码吗以及linux驱动模块的代码嘛
NDK开发可以linux下的android源码中编译单个模块生成.so文件,然后放在上层android 项目中调用,你在源码中吧,你要编译的模块驱动的C代码放进去,按照JIN规则取号名字,然后编\编译,就行了,把生成的 so文件导入到上层项目,然后你知道C的函数名,在java层写本地方法和,C的函数名一样,记得类名也别搞错了,就行了。不要烧录整个系统,只要编译你需要的驱动模块生成so文件就行
3. android中camera的hal模块怎么被调用
CameraService.cpp (frameworks\base\services\camera\libcameraservice)
中调用hw_get_mole
[cpp] view plain print?
void CameraService::onFirstRef()
{
BnCameraService::onFirstRef();
<span style="color: rgb(255, 0, 0);">if (hw_get_mole(CAMERA_HARDWARE_MODULE_ID,
(const hw_mole_t **)&mMole) < 0)</span> {
LOGE("Could not load camera HAL mole");
mNumberOfCameras = 0;
}
else {
mNumberOfCameras = mMole->get_number_of_cameras();
if (mNumberOfCameras > MAX_CAMERAS) {
LOGE("Number of cameras(%d) > MAX_CAMERAS(%d).",
mNumberOfCameras, MAX_CAMERAS);
mNumberOfCameras = MAX_CAMERAS;
}
for (int i = 0; i < mNumberOfCameras; i++) {
setCameraFree(i);
}
}
}
void CameraService::onFirstRef()
{
BnCameraService::onFirstRef();
if (hw_get_mole(CAMERA_HARDWARE_MODULE_ID,
(const hw_mole_t **)&mMole) < 0) {
LOGE("Could not load camera HAL mole");
mNumberOfCameras = 0;
}
else {
mNumberOfCameras = mMole->get_number_of_cameras();
if (mNumberOfCameras > MAX_CAMERAS) {
LOGE("Number of cameras(%d) > MAX_CAMERAS(%d).",
mNumberOfCameras, MAX_CAMERAS);
mNumberOfCameras = MAX_CAMERAS;
}
for (int i = 0; i < mNumberOfCameras; i++) {
setCameraFree(i);
}
}
}
看一下hw_get_mole是怎么回事
[cpp] view plain print?
int hw_get_mole(const char *id, const struct hw_mole_t **mole)
{
return <span style="color: rgb(255, 0, 0);">hw_get_mole_by_class(id, NULL, mole);
</span>}
int hw_get_mole(const char *id, const struct hw_mole_t **mole)
{
return hw_get_mole_by_class(id, NULL, mole);
}
他只是一个封装实际调用了[email protected] (hardware\libhardware)
好在不长,看看吧
[cpp] view plain print?
int hw_get_mole_by_class(const char *class_id, const char *inst,
const struct hw_mole_t **mole)
{
int status;
int i;
const struct hw_mole_t *hmi = NULL;
<span style="color: rgb(255, 0, 0);"> char prop[PATH_MAX];//几个关键的数组
char path[PATH_MAX];//在下面起了重要
char name[PATH_MAX];//作用
</span>
if (inst)
snprintf(name, PATH_MAX, "%s.%s", class_id, inst);
else
strlcpy(name, class_id, PATH_MAX);//走这里
/*
* Here we rely on the fact that calling dlopen multiple times on
* the same .so will simply increment a refcount (and not load
* a new of the library).
* We also assume that dlopen() is thread-safe.
*/
/* Loop through the configuration variants looking for a mole */
for (i=0 ; i<HAL_VARIANT_KEYS_COUNT+1 ; i++) {
if (i < HAL_VARIANT_KEYS_COUNT) {
if (property_get(variant_keys[i], prop, NULL) == 0)
<span style="color: rgb(255, 0, 0);">//在这里将prop的路径得到,分别从
"ro.hardware[qcom]"
"ro.proct.board"[7x27],
"ro.board.platform"[msm7627a],
"ro.arch",
"ro.hw_platform"[QRD_SKU3-1100]
这几个属性文件中获得硬件的信息
有些硬件信息的字符串会出现在编译后生成的.so名字中</span>
{
continue;
}
snprintf(path, sizeof(path), "%s/%s.%s.so",
HAL_LIBRARY_PATH2, name, prop);
if (access(path, R_OK) == 0) break;
snprintf(path, sizeof(path), "%s/%s.%s.so",
HAL_LIBRARY_PATH1, name, prop);<span style="color: rgb(255, 0, 0);">//走这里,在这里得到/system/lib/hw/camera.msm7627a.so
这样一个路径,这个库里有QualcommCamera.cpp,这是
camera模块HAL代码开始的地方</span>
if (access(path, R_OK) == 0) break;
} else {
snprintf(path, sizeof(path), "%s/%s.default.so",
HAL_LIBRARY_PATH1, name);
if (access(path, R_OK) == 0) break;
}
}
status = -ENOENT;
if (i < HAL_VARIANT_KEYS_COUNT+1) {
/* load the mole, if this fails, we're doomed, and we should not try
* to load a different variant. */
status = load(class_id, path, mole);<span style="color: rgb(255, 0, 0);">//这里关键,函数的三个参数可以串联成一句话:
到path(/system/lib/hw/camera.msm7627a.so)这个路径下找到一个id(camera)匹配的mole</span>
}
return status;
}
int hw_get_mole_by_class(const char *class_id, const char *inst,
const struct hw_mole_t **mole)
{
int status;
int i;
const struct hw_mole_t *hmi = NULL;
char prop[PATH_MAX];//几个关键的数组
char path[PATH_MAX];//在下面起了重要
char name[PATH_MAX];//作用
if (inst)
snprintf(name, PATH_MAX, "%s.%s", class_id, inst);
else
strlcpy(name, class_id, PATH_MAX);//走这里
/*
* Here we rely on the fact that calling dlopen multiple times on
* the same .so will simply increment a refcount (and not load
* a new of the library).
* We also assume that dlopen() is thread-safe.
*/
/* Loop through the configuration variants looking for a mole */
for (i=0 ; i<HAL_VARIANT_KEYS_COUNT+1 ; i++) {
if (i < HAL_VARIANT_KEYS_COUNT) {
if (property_get(variant_keys[i], prop, NULL) == 0)
//在这里将prop的路径得到,分别从
"ro.hardware[qcom]"
"ro.proct.board"[7x27],
"ro.board.platform"[msm7627a],
"ro.arch",
"ro.hw_platform"[QRD_SKU3-1100]
这几个属性文件中获得硬件的信息
有些硬件信息的字符串会出现在编译后生成的.so名字中
{
continue;
}
snprintf(path, sizeof(path), "%s/%s.%s.so",
HAL_LIBRARY_PATH2, name, prop);
if (access(path, R_OK) == 0) break;
snprintf(path, sizeof(path), "%s/%s.%s.so",
HAL_LIBRARY_PATH1, name, prop);//走这里,在这里得到/system/lib/hw/camera.msm7627a.so
这样一个路径,这个库里有QualcommCamera.cpp,这是
camera模块HAL代码开始的地方
if (access(path, R_OK) == 0) break;
} else {
snprintf(path, sizeof(path), "%s/%s.default.so",
HAL_LIBRARY_PATH1, name);
if (access(path, R_OK) == 0) break;
}
}
status = -ENOENT;
if (i < HAL_VARIANT_KEYS_COUNT+1) {
/* load the mole, if this fails, we're doomed, and we should not try
* to load a different variant. */
status = load(class_id, path, mole);//这里关键,函数的三个参数可以串联成一句话:
到path(/system/lib/hw/camera.msm7627a.so)这个路径下找到一个id(camera)匹配的mole
}
return status;
}
再来看看load这个函数@hardware.c (hardware\libhardware)
[cpp] view plain print?
static int load(const char *id,
const char *path,
const struct hw_mole_t **pHmi)
{
int status;
void *handle;
struct hw_mole_t *hmi;
/*
* load the symbols resolving undefined symbols before
* dlopen returns. Since RTLD_GLOBAL is not or'd in with
* RTLD_NOW the external symbols will not be global
*/
handle = dlopen(path, RTLD_NOW);
if (handle == NULL) {
char const *err_str = dlerror();
LOGE("load: mole=%s\n%s", path, err_str?err_str:"unknown");
status = -EINVAL;
goto done;
}
<span style="color: rgb(255, 0, 0);"> /* Get the address of the struct hal_mole_info. */
const char *sym = HAL_MODULE_INFO_SYM_AS_STR;
hmi = (struct hw_mole_t *)dlsym(handle, sym);
</span> if (hmi == NULL) {
LOGE("load: couldn't find symbol %s", sym);
status = -EINVAL;
goto done;
}
/* Check that the id matches */
if (strcmp(id, hmi->id) != 0) {
LOGE("load: id=%s != hmi->id=%s", id, hmi->id);
status = -EINVAL;
goto done;
}
hmi->dso = handle;
/* success */
status = 0;
done:
if (status != 0) {
hmi = NULL;
if (handle != NULL) {
dlclose(handle);
handle = NULL;
}
} else {
LOGV("loaded HAL id=%s path=%s hmi=%p handle=%p",
id, path, *pHmi, handle);
}
*pHmi = hmi;
return status;
}
static int load(const char *id,
const char *path,
const struct hw_mole_t **pHmi)
{
int status;
void *handle;
struct hw_mole_t *hmi;
/*
* load the symbols resolving undefined symbols before
* dlopen returns. Since RTLD_GLOBAL is not or'd in with
* RTLD_NOW the external symbols will not be global
*/
handle = dlopen(path, RTLD_NOW);
if (handle == NULL) {
char const *err_str = dlerror();
LOGE("load: mole=%s\n%s", path, err_str?err_str:"unknown");
status = -EINVAL;
goto done;
}
/* Get the address of the struct hal_mole_info. */
const char *sym = HAL_MODULE_INFO_SYM_AS_STR;
hmi = (struct hw_mole_t *)dlsym(handle, sym);
if (hmi == NULL) {
LOGE("load: couldn't find symbol %s", sym);
status = -EINVAL;
goto done;
}
/* Check that the id matches */
if (strcmp(id, hmi->id) != 0) {
LOGE("load: id=%s != hmi->id=%s", id, hmi->id);
status = -EINVAL;
goto done;
}
hmi->dso = handle;
/* success */
status = 0;
done:
if (status != 0) {
hmi = NULL;
if (handle != NULL) {
dlclose(handle);
handle = NULL;
}
} else {
LOGV("loaded HAL id=%s path=%s hmi=%p handle=%p",
id, path, *pHmi, handle);
}
*pHmi = hmi;
return status;
}
在打开的.so(camera.msm7627a.so)中查找HMI符号的地址,并保存在hmi中。至此,.so中的hw_mole_t已经被成功获取,从而可以根
据它获取别的相关接口。
1)HAL通过hw_get_mole函数获取hw_mole_t
2)HAL通过hw_mole_t->methods->open获取hw_device_t指针,并在此open函数中初始化hw_device_t的包装结构中的
函数及hw_device_t中的close函数,如gralloc_device_open。
3)三个重要的数据结构:
a) struct hw_device_t: 表示硬件设备,存储了各种硬件设备的公共属性和方法
b)struct hw_mole_t: 可用hw_get_mole进行加载的mole
c)struct hw_mole_methods_t: 用于定义操作设备的方法,其中只定义了一个打开设备的方法open.
4. android在hal下 如何获得对一个内核节点的
Android 5.0以上,我们发现jni通过hal层去操作内核节点时PERMISSION DENIED 即使在Android源代码工程目录下,进入到system/core/rootdir目录,里面有一个名为ueventd.rc文件,往里面添加一行:/dev/hello 0666 root root ,此操作仍然不能让上层去读写相应的节点, 因为5.0以上采取了SEAndroid/SElinux的安全机制,即使拥有root权限,或者对某内核节点设置为777的权限,仍然无法在JNI层访问。
解决办法:
1.找到需要访问该内核节点的进程(process)我的是以system_server进程来访问
2.打开文件AndroidL/android/external/sepolicy/file_contexts.be
添加
/dev/hello u:object_r:hello_device:s0 1
3.打开文件AndroidL/android/external/sepolicy/device.te
将刚刚第二步写的hello_device声明为dev_type:
type hello_device, dev_type; 1
4.AndroidL/android/external/sepolicy/目录下很多.te文件都是以进程名来结尾的,比如有针对surfaceflinger进程的surfaceflinger,有针对vold进程的vold.te,
我们是由system_server进程来访问这个节点的,所以,我们找到system_server.te打开,加入允许这个进程对/dev/hello的读写权限。
5. 重力传感器 在安卓驱动hal层中lsg这个表示什么如何根据datasheet填写sensor info
重力感应器能利用地球重力场感知手机目前的姿态,如直立、水平、横向……
程序可以调用重力感应器的信息做出相应的反馈,比如屏幕图像从直屏变横屏等
6. 有没有那本书介绍android hal层
书到没见过,只有一些资料而已:
Android HAL层即硬件抽象层是Google响应厂家“希望不公开源码”的要求推出的概念
1,源代码和目标位置
源代码: /hardware/libhardware目录,该目录的目录结构如下:
/hardware/libhardware/hardware.c编译成libhardware.so,目标位置为/system/lib目录
Android.mk中lib文件默认使用LOCAL_MODULE_PATH是等于TARGET_OUT_SHARED_LIBRARIES的。
/hardware/libhardware/include/hardware目录下包含如下头文件:
hardware.h 通用硬件模块头文件hw_mole_t和hw_get_mole_by_class的定义
bit.h bit模块头文件
gralloc.h gralloc模块头文件
lights.h 背光模块头文件
overlay.h overlay模块头文件
qemud.h qemud模块头文件
sensors.h 传感器模块头文件
/hardware/libhardware/moles目录下定义了很多硬件模块
这些硬件模块都编译成xxx.xxx.so,目标位置为/system/lib/hw目录
7. android系统app frameworks层,hal层,core libs代码编译之后在哪个镜像里
Google提供的Android包含了原始Android的目标机代码,主机编译工具、仿真环境,的代码包经过解压后(这里是Android2.2的源码包),源代码的第一层目录结构如下:
|-- Makefile
|-- bionic (bionic C库)
|-- bootable (启动引导相关代码)
|-- build (存放系统编译规则及generic等基础开发包配置)
|-- cts (Android兼容性测试套件标准)
|-- dalvik (dalvik JAVA虚拟机)
|-- development (应用程序开发相关)
|-- external (android使用的一些开源的模组)
|-- frameworks (核心框架——java及C++语言)
|-- hardware (主要保护硬解适配层HAL代码)
|-- libcore
|-- ndk
|-- device
|-- out (编译完成后的代码输出与此目录)
|-- packages (应用程序包)
|-- prebuilt (x86和arm架构下预编译的一些资源)
|-- sdk (sdk及模拟器)
|-- system (文件系统库、应用及组件——c语言)
`-- vendor (厂商定制代码)
bionic 目录
|-- libc (C库)
| |-- arch-arm (ARM架构,包含系统调用汇编实现)
| |-- arch-x86 (x86架构,包含系统调用汇编实现)
| |-- bionic (由C实现的功能,架构无关)
| |-- docs (文档)
| |-- include (头文件)
| |-- inet
| |-- kernel (Linux内核中的一些头文件)
| |-- netbsd (?netbsd系统相关,具体作用不明)
| |-- private (?一些私有的头文件)
| |-- stdio (stdio实现)
| |-- stdlib (stdlib实现)
| |-- string (string函数实现)
| |-- tools (几个工具)
| |-- tzcode (时区相关代码)
| |-- unistd (unistd实现)
| `-- zoneinfo (时区信息)
|-- libdl (libdl实现,dl是动态链接,提供访问动态链接库的功能)
|-- libm (libm数学库的实现,)
| |-- alpha (apaha架构)
| |-- amd64 (amd64架构)
| |-- arm (arm架构)
| |-- bsdsrc (?bsd的源码)
| |-- i386 (i386架构)
| |-- i387 (i387架构?)
| |-- ia64 (ia64架构)
| |-- include (头文件)
| |-- man (数学函数,后缀名为.3,一些为freeBSD的库文件)
| |-- powerpc (powerpc架构)
| |-- sparc64 (sparc64架构)
| `-- src (源代码)
|-- libstdc++ (libstdc++ C++实现库)
| |-- include (头文件)
| `-- src (源码)
|-- libthread_db (多线程程序的调试器库)
| `-- include (头文件)
`-- linker (动态链接器)
`-- arch (支持arm和x86两种架构)
bootable 目录
|-- bootloader (适合各种bootloader的通用代码)
| `-- legacy (估计不能直接使用,可以参考)
| |-- arch_armv6 (V6架构,几个简单的汇编文件)
| |-- arch_msm7k (高通7k处理器架构的几个基本驱动)
| |-- include (通用头文件和高通7k架构头文件)
| |-- libboot (启动库,都写得很简单)
| |-- libc (一些常用的c函数)
| |-- nandwrite (nandwirte函数实现)
| `-- usbloader (usbloader实现)
|-- diskinstaller (android镜像打包器,x86可生产iso)
`-- recovery (系统恢复相关)
|-- edify (升级脚本使用的edify脚本语言)
|-- etc (init.rc恢复脚本)
|-- minui (一个简单的UI)
|-- minzip (一个简单的压缩工具)
|-- mttils (mtd工具)
|-- res (资源)
| `-- images (一些图片)
|-- tools (工具)
| `-- ota (OTA Over The Air Updates升级工具)
`-- updater (升级器)
build目录
|-- core (核心编译规则)
|-- history (历史记录)
|-- libs
| `-- host (主机端库,有android “cp”功能替换)
|-- target (目标机编译对象)
| |-- board (开发)
| | |-- emulator (模拟器)
| | |-- generic (通用)
| | |-- idea6410 (自己添加的)
| | `-- sim (最简单)
| `-- proct (开发对应的编译规则)
| `-- security (密钥相关)
`-- tools (编译中主机使用的工具及脚本)
|-- acp (Android "acp" Command)
|-- apicheck (api检查工具)
|-- applypatch (补丁工具)
|-- apriori (预链接工具)
|-- atree (tree工具)
|-- bin2asm (bin转换为asm工具)
|-- check_prereq (检查编译时间戳工具)
|-- dexpreopt (模拟器相关工具,具体功能不明)
|-- droiddoc (?作用不明,java语言,网上有人说和JDK5有关)
|-- fs_config (This program takes a list of files and directories)
|-- fs_get_stats (获取文件系统状态)
|-- iself (判断是否ELF格式)
|-- isprelinked (判断是否prelinked)
|-- kcm (按键相关)
|-- lsd (List symbol dependencies)
|-- releasetools (生成镜像的工具及脚本)
|-- rgb2565 (rgb转换为565)
|-- signapk (apk签名工具)
|-- soslim (strip工具)
`-- zipalign (zip archive alignment tool)
dalvik目录 dalvik虚拟机
.
|-- dalvikvm (main.c的目录)
|-- dexmp (dex反汇编)
|-- dexlist (List all methods in all concrete classes in a DEX file.)
|-- dexopt (预验证与优化)
|-- docs (文档)
|-- dvz (和zygote相关的一个命令)
|-- dx (dx工具,将多个java转换为dex)
|-- hit (?java语言写成)
|-- libcore (核心库)
|-- libcore-disabled (?禁用的库)
|-- libdex (dex的库)
|-- libnativehelper (Support functions for Android's class libraries)
|-- tests (测试代码)
|-- tools (工具)
`-- vm (虚拟机实现)
development 目录 (开发者需要的一些例程及工具)
|-- apps (一些核心应用程序)
| |-- BluetoothDebug (蓝牙调试程序)
| |-- CustomLocale (自定义区域设置)
| |-- Development (开发)
| |-- Fallback (和语言相关的一个程序)
| |-- FontLab (字库)
| |-- GestureBuilder (手势动作)
| |-- NinePatchLab (?)
| |-- OBJViewer (OBJ查看器)
| |-- SdkSetup (SDK安装器)
| |-- SpareParts (高级设置)
| |-- Term (远程登录)
| `-- launchperf (?)
|-- build (编译脚本模板)
|-- cmds (有个monkey工具)
|-- data (配置数据)
|-- docs (文档)
|-- host (主机端USB驱动等)
|-- ide (集成开发环境)
|-- ndk (本地开发套件——c语言开发套件)
|-- pdk (Plug Development Kit)
|-- samples (演示程序)
| |-- AliasActivity ()
| |-- ApiDemos (API演示程序)
| |-- BluetoothChat (蓝牙聊天)
| |-- BrowserPlugin (浏览器插件)
| |-- BusinessCard (商业卡)
| |-- Compass (指南针)
| |-- ContactManager (联系人管理器)
| |-- CubeLiveWall** (动态壁纸的一个简单例程)
| |-- FixedGridLayout (像是布局)
| |-- GlobalTime (全球时间)
| |-- HelloActivity (Hello)
| |-- Home (Home)
| |-- JetBoy (jetBoy游戏)
| |-- LunarLander (貌似又是一个游戏)
| |-- MailSync (同步)
| |-- MultiResolution (多分辨率)
| |-- MySampleRss (RSS)
| |-- NotePad (记事本)
| |-- RSSReader (RSS阅读器)
| |-- SearchableDictionary (目录搜索)
| |-- **JNI (JNI例程)
| |-- SkeletonApp (空壳APP)
| |-- Snake (snake程序)
| |-- SoftKeyboard (软键盘)
| |-- Wiktionary (?维基)
| `-- Wiktionary**(?维基例程)
|-- scripts (脚本)
|-- sdk (sdk配置)
|-- simulator (?模拟器)
|-- testrunner (?测试用)
`-- tools (一些工具)
8. android的hal层用什么语言实现
Android的硬件抽象层,简单来说,就是对Linux内核驱动程序的封装,向上提供接口,屏蔽低层的实现细节。也就是说,把对硬件的支持分成了两层,一层放在用户空间(User Space),一层放在内核空间(Kernel Space),其中,硬件抽象层运行在用户空间,而Linux内核驱动程序运行在内核空间。为什么要这样安排呢?把硬件抽象层和内核驱动整合在一起放在内核空间不可行吗?从技术实现的角度来看,是可以的,然而从商业的角度来看,把对硬件的支持逻辑都放在内核空间,可能会损害厂家的利益。我们知道,Linux内核源代码版权遵循GNU License,而Android源代码版权遵循Apache License,前者在发布产品时,必须公布源代码,而后者无须发布源代码。如果把对硬件支持的所有代码都放在Linux驱动层,那就意味着发布时要公开驱动程序的源代码,而公开源代码就意味着把硬件的相关参数和实现都公开了,在手机市场竞争激烈的今天,这对厂家来说,损害是非常大的。因此,Android才会想到把对硬件的支持分成硬件抽象层和内核驱动层,内核驱动层只提供简单的访问硬件逻辑,例如读写硬件寄存器的通道,至于从硬件中读到了什么值或者写了什么值到硬件中的逻辑,都放在硬件抽象层中去了,这样就可以把商业秘密隐藏起来了。也正是由于这个分层的原因,Android被踢出了Linux内核主线代码树中。大家想想,Android放在内核空间的驱动程序对硬件的支持是不完整的,把Linux内核移植到别的机器上去时,由于缺乏硬件抽象层的支持,硬件就完全不能用了,这也是为什么说Android是开放系统而不是开源系统的原因。
撇开这些争论,学习Android硬件抽象层,对理解整个A