圖像演算法工程師長沙招聘
A. 演算法工程師的就業前景如何
人工智慧工作最受歡迎。演算法工程師平均招聘工資建議達到25978元。由於人才匱乏,企業競爭激烈,平均加薪超過7%。該市90%以上的人工智慧高薪工作都在天河區.近日,由廣州天河人才港和BOSS直接就業研究院聯合發布的《廣州市天河區2018年1-4月人才趨勢報告》,展示了該地區的主流發展趨勢:IAB已經成為天河區,和天河區創新型企業和大型企業布局或發展的核心主方向,企業以高薪吸引更多的行業優秀人才。「天河區企業渴望以高薪攫取IAB人才,這意味著企業要在這些行業中發揮實力。
B. 圖像演算法工程師,工作半年對未來很迷茫,該如何調節
一個人在面臨新的環境,原有狀態發生改變,需要做出選擇的時候,容易產生迷茫。比如高考結束後填報志願、新生入學、畢業進入社會就業選擇、工作幾年後不知道如何調整未來的方向出現職場迷茫等等,你說的職場迷茫正是後面這種情況。迷茫是暫時的,同時也是正常的。每個人在成長過程中都會或多或少感覺迷茫。要擺脫這種境況,建議你根據自己的能力、崗位的要求、技術的發展趨勢、市場未來的需求,為自己設置一個目標,也就是規劃.然後定一些階段目標,只要自己跳一跳就能實現的那種.等實現後,再定下一個努力就能實現的目標,這樣一步一步就達到最終目標了.目標切忌過大,要可望又可及,那樣不至於使自己迷茫和氣餒,如此你便可以能夠有成就感,不再迷茫。
C. 各位前輩好:現在面臨就業,一個offer是光電行業的圖像演算法工程師;一個是機器視覺研發工程師;
光電行業的圖像演算法工程師和機器視覺研發工程師應該都是類似工作的,都是做圖像處理的。
目前視覺行業還是比較火的,現在的行業做,然後細分到具體行業做
D. 演算法工程師 就業前景
一、演算法工程師簡介
(通常是月薪15k以上,年薪18萬以上,只是一個概數,具體薪資可以到招聘網站如拉鉤,獵聘網上看看)
演算法工程師目前是一個高端也是相對緊缺的職位;
演算法工程師包括
音/視頻演算法工程師(通常統稱為語音/視頻/圖形開發工程師)、圖像處理演算法工程師、計算機視覺演算法工程師、通信基帶演算法工程師、信號演算法工程師、射頻/通信演算法工程師、自然語言演算法工程師、數據挖掘演算法工程師、搜索演算法工程師、控制演算法工程師(雲台演算法工程師,飛控演算法工程師,機器人控制演算法)、導航演算法工程師(
@之介
感謝補充)、其他【其他一切需要復雜演算法的行業】
專業要求:計算機、電子、通信、數學等相關專業;
學歷要求:本科及其以上的學歷,大多數是碩士學歷及其以上;
語言要求:英語要求是熟練,基本上能閱讀國外專業書刊,做這一行經常要讀論文;
必須掌握計算機相關知識,熟練使用模擬工具MATLAB等,必須會一門編程語言。
演算法工程師的技能樹(不同方向差異較大,此處僅供參考)
1 機器學習
2 大數據處理:熟悉至少一個分布式計算框架Hadoop/Spark/Storm/ map-rece/MPI
3 數據挖掘
4 扎實的數學功底
5 至少熟悉C/C++或者java,熟悉至少一門編程語言例如java/python/R
加分項:具有較為豐富的項目實踐經驗(不是水論文的哪種)
二、演算法工程師大致分類與技術要求
(一)圖像演算法/計算機視覺工程師類
包括
圖像演算法工程師,圖像處理工程師,音/視頻處理演算法工程師,計算機視覺工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:機器學習,模式識別
l
技術要求:
(1) 精通DirectX HLSL和OpenGL GLSL等shader語言,熟悉常見圖像處理演算法GPU實現及優化;
(2) 語言:精通C/C++;
(3) 工具:Matlab數學軟體,CUDA運算平台,VTK圖像圖形開源軟體【醫學領域:ITK,醫學圖像處理軟體包】
(4) 熟悉OpenCV/OpenGL/Caffe等常用開源庫;
(5) 有人臉識別,行人檢測,視頻分析,三維建模,動態跟蹤,車識別,目標檢測跟蹤識別經歷的人優先考慮;
(6) 熟悉基於GPU的演算法設計與優化和並行優化經驗者優先;
(7) 【音/視頻領域】熟悉H.264等視頻編解碼標准和FFMPEG,熟悉rtmp等流媒體傳輸協議,熟悉視頻和音頻解碼演算法,研究各種多媒體文件格式,GPU加速;
應用領域:
(1) 互聯網:如美顏app
(2) 醫學領域:如臨床醫學圖像
(3) 汽車領域
(4) 人工智慧
相關術語:
(1) OCR:OCR (Optical Character Recognition,光學字元識別)是指電子設備(例如掃描儀或數碼相機)檢查紙上列印的字元,通過檢測暗、亮的模式確定其形狀,然後用字元識別方法將形狀翻譯成計算機文字的過程
(2) Matlab:商業數學軟體;
(3) CUDA: (Compute Unified Device Architecture),是顯卡廠商NVIDIA推出的運算平台(由ISA和GPU構成)。 CUDA™是一種由NVIDIA推出的通用並行計算架構,該架構使GPU能夠解決復雜的計算問題
(4) OpenCL: OpenCL是一個為異構平台編寫程序的框架,此異構平台可由CPU,GPU或其他類型的處理器組成。
(5) OpenCV:開源計算機視覺庫;OpenGL:開源圖形庫;Caffe:是一個清晰,可讀性高,快速的深度學習框架。
(6) CNN:(深度學習)卷積神經網路(Convolutional Neural Network)CNN主要用來識別位移、縮放及其他形式扭曲不變性的二維圖形。
(7) 開源庫:指的是計算機行業中對所有人開發的代碼庫,所有人均可以使用並改進代碼演算法。
(二)機器學習工程師
包括
機器學習工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:人工智慧,機器學習
l
技術要求:
(1) 熟悉Hadoop/Hive以及Map-Rece計算模式,熟悉Spark、Shark等尤佳;
(2) 大數據挖掘;
(3) 高性能、高並發的機器學習、數據挖掘方法及架構的研發;
應用領域:
(1)人工智慧,比如各類模擬、擬人應用,如機器人
(2)醫療用於各類擬合預測
(3)金融高頻交易
(4)互聯網數據挖掘、關聯推薦
(5)無人汽車,無人機
相關術語:
(1) Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(三)自然語言處理工程師
包括
自然語言處理工程師
要求
l
專業:計算機相關專業;
l
技術領域:文本資料庫
l
技術要求:
(1) 熟悉中文分詞標注、文本分類、語言模型、實體識別、知識圖譜抽取和推理、問答系統設計、深度問答等NLP 相關演算法;
(2) 應用NLP、機器學習等技術解決海量UGC的文本相關性;
(3) 分詞、詞性分析、實體識別、新詞發現、語義關聯等NLP基礎性研究與開發;
(4) 人工智慧,分布式處理Hadoop;
(5) 數據結構和演算法;
應用領域:
口語輸入、書面語輸入
、語言分析和理解、語言生成、口語輸出技術、話語分析與對話、文獻自動處理、多語問題的計算機處理、多模態的計算機處理、信息傳輸與信息存儲 、自然語言處理中的數學方法、語言資源、自然語言處理系統的評測。
相關術語:
(2) NLP:人工智慧的自然語言處理,NLP (Natural Language Processing) 是人工智慧(AI)的一個子領域。NLP涉及領域很多,最令我感興趣的是「中文自動分詞」(Chinese word segmentation):結婚的和尚未結婚的【計算機中卻有可能理解為結婚的「和尚「】
(四)射頻/通信/信號演算法工程師類
包括
3G/4G無線通信演算法工程師, 通信基帶演算法工程師,DSP開發工程師(數字信號處理),射頻通信工程師,信號演算法工程師
要求
l
專業:計算機、通信相關專業;
l
技術領域:2G、3G、4G,BlueTooth(藍牙),WLAN,無線移動通信, 網路通信基帶信號處理
l
技術要求:
(1) 了解2G,3G,4G,BlueTooth,WLAN等無線通信相關知識,熟悉現有的通信系統和標准協議,熟悉常用的無線測試設備;
(2) 信號處理技術,通信演算法;
(3) 熟悉同步、均衡、信道解碼等演算法的基本原理;
(4) 【射頻部分】熟悉射頻前端晶元,扎實的射頻微波理論和測試經驗,熟練使用射頻電路模擬工具(如ADS或MW或Ansoft);熟練使用cadence、altium designer PCB電路設計軟體;
(5) 有扎實的數學基礎,如復變函數、隨機過程、數值計算、矩陣論、離散數學
應用領域:
通信
VR【用於快速傳輸視頻圖像,例如樂客靈境VR公司招募的通信工程師(數據編碼、流數據)】
物聯網,車聯網
導航,軍事,衛星,雷達
相關術語:
(1) 基帶信號:指的是沒有經過調制(進行頻譜搬移和變換)的原始電信號。
(2) 基帶通信(又稱基帶傳輸):指傳輸基帶信號。進行基帶傳輸的系統稱為基帶傳輸系統。傳輸介質的整個信道被一個基帶信號佔用.基帶傳輸不需要數據機,設備化費小,具有速率高和誤碼率低等優點,.適合短距離的數據傳輸,傳輸距離在100米內,在音頻市話、計算機網路通信中被廣泛採用。如從計算機到監視器、列印機等外設的信號就是基帶傳輸的。大多數的區域網使用基帶傳輸,如乙太網、令牌環網。
(3) 射頻:射頻(RF)是Radio Frequency的縮寫,表示可以輻射到空間的電磁頻率(電磁波),頻率范圍從300KHz~300GHz之間(因為其較高的頻率使其具有遠距離傳輸能力)。射頻簡稱RF射頻就是射頻電流,它是一種高頻交流變化電磁波的簡稱。每秒變化小於1000次的交流電稱為低頻電流,大於10000次的稱為高頻電流,而射頻就是這樣一種高頻電流。高頻(大於10K);射頻(300K-300G)是高頻的較高頻段;微波頻段(300M-300G)又是射頻的較高頻段。【有線電視就是用射頻傳輸方式】
(4) DSP:數字信號處理,也指數字信號處理晶元
(五)數據挖掘演算法工程師類
包括
推薦演算法工程師,數據挖掘演算法工程師
要求
l
專業:計算機、通信、應用數學、金融數學、模式識別、人工智慧;
l
技術領域:機器學習,數據挖掘
l
技術要求:
(1) 熟悉常用機器學習和數據挖掘演算法,包括但不限於決策樹、Kmeans、SVM、線性回歸、邏輯回歸以及神經網路等演算法;
(2) 熟練使用SQL、Matlab、Python等工具優先;
(3) 對Hadoop、Spark、Storm等大規模數據存儲與運算平台有實踐經驗【均為分布式計算框架】
(4) 數學基礎要好,如高數,統計學,數據結構
l
加分項:數據挖掘建模大賽;
應用領域
(1) 個性化推薦
(2) 廣告投放
(3) 大數據分析
相關術語
Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(六)搜索演算法工程師
要求
l
技術領域:自然語言
l
技術要求:
(1) 數據結構,海量數據處理、高性能計算、大規模分布式系統開發
(2) hadoop、lucene
(3) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗
(4) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗;
(5) 精通倒排索引、全文檢索、分詞、排序等相關技術;
(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;
(7) 優秀的資料庫設計和優化能力,精通MySQL資料庫應用 ;
(8) 了解推薦引擎和數據挖掘和機器學習的理論知識,有大型搜索應用的開發經驗者優先。
(七)控制演算法工程師類
包括了雲台控制演算法,飛控控制演算法,機器人控制演算法
要求
l
專業:計算機,電子信息工程,航天航空,自動化
l
技術要求:
(1) 精通自動控制原理(如PID)、現代控制理論,精通組合導航原理,姿態融合演算法,電機驅動,電機驅動
(2) 卡爾曼濾波,熟悉狀態空間分析法對控制系統進行數學模型建模、分析調試;
l
加分項:有電子設計大賽,機器人比賽,robocon等比賽經驗,有硬體設計的基礎;
應用領域
(1)醫療/工業機械設備
(2)工業機器人
(3)機器人
(4)無人機飛控、雲台控制等
(八)導航演算法工程師
要求
l 專業:計算機,電子信息工程,航天航空,自動化
l 技術要求(以公司職位JD為例)
公司一(1)精通慣性導航、激光導航、雷達導航等工作原理;
(2)精通組合導航演算法設計、精通卡爾曼濾波演算法、精通路徑規劃演算法;
(3)具備導航方案設計和實現的工程經驗;
(4)熟悉C/C++語言、熟悉至少一種嵌入式系統開發、熟悉Matlab工具;
公司二(1)熟悉基於視覺信息的SLAM、定位、導航演算法,有1年以上相關的科研或項目經歷;
(2)熟悉慣性導航演算法,熟悉IMU與視覺信息的融合;
應用領域
無人機、機器人等。
E. 圖像演算法工程師就業難度如何
目前來講就業應該還可以,同部門演算法薪資也會比軟體工程師要高一點點。
F. 長沙有哪些知名的科技公司/互聯網大廠開啟了2022校招/秋招
長沙企業有華為、快樂陽光、萬興科技、58集團、興盛優選、御家匯、安克創新、草花互動、拓維、CSDN、映客、深信服等,另外世 界500強三一重工、中 國500強中聯重科等都在長沙。
推薦創意軟體A股上市企業萬興科技。萬興科技在9月1日開啟了2022屆全
開放了200+崗位,重點加大對數字創意軟體領域產品、研發、設計、營 銷、職能五大類職位青年才俊的挖掘培養。畢業生選擇入職長沙,不僅可與深圳同級同薪,且有機會享免息貸款「普惠安居計劃」。萬興科技還提供有競爭力的薪酬與福利,比如產研崗位平均年薪17W+,優異者不設上限。9月17日,萬興科技還啟動了2021秋季社招,開放崗位涵蓋架構師、音視頻開發工程師、C++開發工程師、演算法開發工程師、AI演算法工程師、產品經理、數據產品經理、數據分析師、UI設計師、資深交互設計師、高級創意拓展經理、高級用戶體驗設計師、海外內容運營等,部分崗位最高年薪可達百萬,優異者薪資不設上限。 「萬興科技官網-人才招聘-校園招聘」投遞簡歷。
G. 做了半年圖像演算法工程師感覺很迷茫怎麼辦
已經不太適合了
這種工作比較累,而且做這種要經常參與加班和分工製作,大多都是那些20出頭的年輕人在做這些,一個團隊中,如果你因為特殊情況而不能經常來加班,也確實不怎麼好
還是建議一些文職,或者是自己能控制時間的崗位會比較好
個人意見,僅作參考
H. 從0基礎學習5年圖像視覺演算法工程師每天學習4小時,學習5年後工資能多錢
視覺工程師的工資很高如果你能夠勝任工作高工資有5000元
I. 圖像演算法工程師去哪個企業比較好
兩者其實差別都不算很大,從專業本身來說,模式識別研發就比如汽車的車牌,你怎麼去識別,圖像演算法主要研究目的就是比如車牌你怎麼讓他更清楚地被你採集後得到有用的信息,還原圖片的原來面目等。都是演算法類的研究,當然演算法也是離不開程序的
J. 圖像演算法工程師待遇高嗎
的確算得上是一個入演算法坑的黃金時間,曾經的條條大路通 CS 變成了條條大路通 AI,不管你曾經讀的是物理還是生物,化學還是數學,只要你會 Python,會統計學基礎,那時的我都會推薦你們來試一試加入演算法這個坑,我也抱著體驗的心態開了幾次知乎 Live 都講了一些關於演算法入門相關的課,按那時候來講,只要你「思路正常,邏輯清晰,吃苦耐勞,肯學習」,在演算法這個坑裡摸滾帶爬四五年到現在,你要是在大廠,基本上都能拿到這個數,放一張最近的圖可供參考。
圖片引用至 @曾加 ,可以參考這位大佬的最新文章:
曾加:最新!互聯網大廠各職級薪資對應關系圖(2020年初)
zhuanlan.hu.com
圖標
以我熟悉的阿里為例,文中所說的二三十人團隊,那基本上就一個P8主管,下面再拆成2-3個小組,每個小組有一個P7/8帶隊,帶著一群P5-P7幹活。這就基本構成了阿里的一個最小組織單元,每年的績效和獎金大體上都是由這位P8主管決定的,所以我們一般尊稱為老闆……
扯遠了,其實我想表達一點,如果現在再有人來問我,學了 Python 之後怎麼樣加入演算法坑比較好,我的建議是不加入。
我們常說的演算法,本質上是統計,而統計是基於大數據的。目前能真正擁有大數據基建的企業其實並不多,能通過演算法產出新價值的就更少,所以看起來搞 AI 的風風火火,其實大部分都是投資人含淚投的錢,背後能賺錢的少之又少,即便是在大廠也不例外。
所以一個目前仍不賺錢的行業,沖著心中偉大的理想和抱負,會像招開發那樣花重金吸納大批人才嗎?答案明顯為否,其實只需要花重金留住頂尖的演算法人才即可,調包調參的 AI 選手無論何時都可以招得到,而目前大部分通過自學、培訓機構出來的 AI 人才,就是這樣的 tool boy。
巧的是,曾經我也是這樣的 AI 選手,但誰叫我運氣好,混得好不如混得早,現在轉去數據分析那可就是降維打擊了(手動狗頭
最後再概括一下,今年是 2020 年,如果想從事演算法和數據行業,建議先讀一個相關專業的碩士,比如數據挖掘、圖像識別等,且學校不能太非主流,不然可能簡歷面都過不了。