資料庫第八章
A. 使用c開發資料庫應用系統 第八章怎麼得到商品類型id
插入進去之後,再寫一個查詢語句
查詢最後一次 插入進去的記錄的主鍵值
B. 資料庫應用這門課一共有多少章節
這門課一共有12個章節。包括:第一章sqlServer2008簡介,第二章資料庫的建立與維護,第三章表的建立與維護,第四章表數據操作,第五章安全與許可權,第六章T-SQL語言基礎,第七章查詢和視圖,第八章索引,第九章數據完整性,第十章存儲過程和觸發器,第十一章數據備份、恢復和報表,第十二章SQL高級應用,。
C. 資料庫系統概論這門課一共有多少章節
這門課一共有12個章節。包括:前言,第一章緒論,第二章關系資料庫,第三章關系資料庫標准語言SQL,第四章資料庫安全性,第五章資料庫完整性,第六章關系數據理論,第七章資料庫設計,第八章資料庫編程,第九章關系查詢處理和查詢優化,第十章資料庫恢復技術,第十一章並發控制,。
D. 資料庫系統概念第五版本是不是整本書都要學完啊,感覺學起來好難啊,尤其是第八章以後的內容,第八章的習
一般來講資料庫要考的就是sql語句,還有一些基本概念,像範式什麼的,如果應付考試,把sql語句,範式學好就可以,如果想學透,那就比較難了,得把基礎打的特別扎實,不過一般學編程的話只要會sql,範式,資料庫特性什麼的就可以了。
E. 資料庫應用這門課程第八章索引的知識點有哪些
資料庫應用這門課第八章索引的知識點包含章節導引,第一節索引概述,第二節索引的分類及特點,。
F. 資料庫系統概論的目錄
第一篇 資料庫系統原理
第一章 資料庫系統概念
1.1 數據管理技術的進展
1.2 數據與聯系
1.3 資料庫系統的組成
1.4 數據的分層視圖
1.5 資料庫與信息系統的聯系
1.6 資料庫的新發展
習題一
第二章 資料庫存儲結構
2.1 數據的外存組織
2.2 基本文件組織
2.3 索引結構
習題二
第三章 數據模型
3.1 數據模型概述
3.2 層次數據模型
3.3 網狀數據模型
3.4 關系數據模型
3.5 E-R模型
3.6 面向對象數據模型
習題三
第四章 資料庫管理軟體
4.1 資料庫管理軟體的主要目標
4.2 資料庫管理系統
4.3 SQL標准簡介
4.4 ORACLE系統
4.5 客戶機/伺服器資料庫及其開發工具
習題四
第五章 層次資料庫系統
5.1 IMS的系統結構
5.2 IMS的數據結構
5.3 IMS的邏輯資料庫
5.4 IMS的數據存儲結構
5.5 IMS的數據操作
習題五
第六章 網狀資料庫系統
6.1 DBTG數據結構
6.2 DBTG數據描述
6.3 DBTG模式數據描述語言
6.4 DBTG子模式數據描述語言
6.5 DBTG數據操縱語言
習題六
第七章 關系資料庫系統
7.1 基本概念
7.2 關系資料庫系統的數據描述
7.3 關系資料庫系統的數據操作
習題七
第八章 資料庫保護
8.1 完整性
8.2 安全性
8.3 並發控制
8.4 恢復
習題八
第九章 資料庫設計
9.1 資料庫設計步驟
9.2 需求分析
9.3 概念設計
9.4 實現設計
9.5 物理設計
9.6 實施與維護
9.7 關系規范化
習題九
第十章 資料庫系統的運行與管理
10.1 資料庫運行環境
10.2 資料庫運行維護
10.3 資料庫的管理
10.4 資料庫的開發管理
習題十
第二篇 FoxPro及其程序設計
第十一章 FoxPro概述
11.1 FoxPro系列簡介
11.2 FoxPro的技術指標
11.3 FoxPro使用入門
11.4 FoxPro應用基礎
第十二章 資料庫的建立與維護
12.1 資料庫結構的建立
12.2 資料庫結構的維護
12.3 資料庫的數據輸入
12.4 資料庫的基本數據操作
12.5 資料庫文件管理操作
12.6 資料庫的管理操作
第十三章 FoxPro程序設計基礎
13.1 FoxPro程序的建立、運行和結束
13.2 內存變數的創建與使用
13.3 數組
13.4 數據的輸入與輸出
13.5 FoxPro程序結構
第十四章 FoxPro程序設計技巧
14.1 窗口設計
14.2 菜單設計
14.3 報表設計簡述
第十五章 區域網絡環境下的FoxPro
15.1 網路站點配置文件的設置
15.2 並發控制
15.3 FoxPro網路多用戶命令與函數
15.4 FoxPro的網路錯誤信息
第三篇 學習指導與實驗
第一部分 課程大綱
第二部分 學習輔導
第三部分 習題解答
第四部分 實驗
……
G. 資料庫原理與應用教程第八章習題,創建資料庫
create database Student
on primary
(name='student2',filename='c:\data\student2.mdf',size=20,maxsize=100,filegrowth=1),
(name='student3',filename='c:\data\student3.mdf',size=20,maxsize=100,filegrowth=1)
log on
(name='studentlog1',filename='c:\data\studentlog1.ldf',size=10,maxsize=50,filegrowth=1),
(name='studentlog2',filename='c:\data\studentlog2.ldf',size=10,maxsize=50,filegrowth=1)
alter database Student add filegroup 分組
alter database Student add file(name='student1',filename='c:\data\student1.ndf',size=20,maxsize=unlimited,filegrowth=10%)
to filegroup 分組
H. 資料庫原理與應用教程第八章習題,創建簡單資料庫
---創建Warehouse stock資料庫
create database Warehouse-stock
on
(name=Warehouse stock,
filename='c:\Warehouse stock\Warehouse-stock.mdf',
size=10MB
)
log on
(name=Warehouse stock_log,
filename='c:\Warehouse stock\Warehouse-stock_log.ldf'
size=2MB
)
go
註:兩個路徑要一致。
---創建資料庫的格式
create database 資料庫名
on
(name=邏輯文件名,
filename=路徑,
size=文件初始容量,
maxsize=文件最大值,
filegrowth=遞增容量
)
log on
(name= ,
filename= ,
size= ,
maxsize= ,
filegrowth=
)
go
I. 資料庫系統概論這門課程第八章資料庫編程的知識點有哪些
資料庫系統概論這門課第八章資料庫編程的知識點包含章節導引,第一節嵌入式SQL,第二節過程化SQL,第三節存儲過程和函數,第四節ODBC編程,第五節小結與實驗,。
J. 大數據需要學編程嗎
導讀:
第一章:初識Hadoop
第二章:更高效的WordCount
第三章:把別處的數據搞到Hadoop上
第四章:把Hadoop上的數據搞到別處去
第五章:快一點吧,我的SQL
第六章:一夫多妻制
第七章:越來越多的分析任務
第八章:我的數據要實時
第九章:我的數據要對外
第十章:牛逼高大上的機器學習
數據量大,TB->PB
數據類型繁多,結構化、非結構化文本、日誌、視頻、圖片、地理位置等;
商業價值高,但是這種價值需要在海量數據之上,通過數據分析與機器學習更快速的挖掘出來;
處理時效性高,海量數據的處理需求不再局限在離線計算當中。
Hadoop 1.0、Hadoop 2.0
MapRece、HDFS
NameNode、DataNode
JobTracker、TaskTracker
Yarn、ResourceManager、NodeManager
0和Hadoop2.0的區別;
MapRece的原理(還是那個經典的題目,一個10G大小的文件,給定1G大小的內存,如何使用Java程序統計出現次數最多的10個單詞及次數);
HDFS讀寫數據的流程;向HDFS中PUT數據;從HDFS中下載數據;
自己會寫簡單的MapRece程序,運行出現問題,知道在哪裡查看日誌;
會寫簡單的SELECT、WHERE、GROUP BY等SQL語句;
Hive SQL轉換成MapRece的大致流程;
Hive中常見的語句:創建表、刪除表、往表中載入數據、分區、將表中數據下載到本地;
為什麼Spark比MapRece快。
使用SparkSQL代替Hive,更快的運行SQL。
使用Kafka完成數據的一次收集,多次消費架構。
自己可以寫程序完成Kafka的生產者和消費者。
經常有初學者在博客和QQ問我,自己想往大數據方向發展,該學哪些技術,學習路線是什麼樣的,覺得大數據很火,就業很好,薪資很高。如果自己很迷茫,為了這些原因想往大數據方向發展,也可以,那麼我就想問一下,你的專業是什麼,對於計算機/軟體,你的興趣是什麼?是計算機專業,對操作系統、硬體、網路、伺服器感興趣?是軟體專業,對軟體開發、編程、寫代碼感興趣?還是數學、統計學專業,對數據和數字特別感興趣。。
其實這就是想告訴你的大數據的三個發展方向,平台搭建/優化/運維/監控、大數據開發/設計/架構、數據分析/挖掘。請不要問我哪個容易,哪個前景好,哪個錢多。
先扯一下大數據的4V特徵:
現如今,正式為了應對大數據的這幾個特點,開源的大數據框架越來越多,越來越強,先列舉一些常見的:
文件存儲:Hadoop HDFS、Tachyon、KFS
離線計算:Hadoop MapRece、Spark
流式、實時計算:Storm、Spark Streaming、S4、Heron
K-V、NOSQL資料庫:HBase、Redis、MongoDB
資源管理:YARN、Mesos
日誌收集:Flume、Scribe、Logstash、Kibana
消息系統:Kafka、StormMQ、ZeroMQ、RabbitMQ
查詢分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid
分布式協調服務:Zookeeper
集群管理與監控:Ambari、Ganglia、Nagios、Cloudera Manager
數據挖掘、機器學習:Mahout、Spark MLLib
數據同步:Sqoop
任務調度:Oozie
……
眼花了吧,上面的有30多種吧,別說精通了,全部都會使用的,估計也沒幾個。
就我個人而言,主要經驗是在第二個方向(開發/設計/架構),且聽聽我的建議吧。
第一章:初識Hadoop
1.1 學會網路與Google
不論遇到什麼問題,先試試搜索並自己解決。
Google首選,翻不過去的,就用網路吧。
1.2 參考資料首選官方文檔
特別是對於入門來說,官方文檔永遠是首選文檔。
相信搞這塊的大多是文化人,英文湊合就行,實在看不下去的,請參考第一步。
1.3 先讓Hadoop跑起來
Hadoop可以算是大數據存儲和計算的開山鼻祖,現在大多開源的大數據框架都依賴Hadoop或者與它能很好的兼容。
關於Hadoop,你至少需要搞清楚以下是什麼:
自己搭建Hadoop,請使用第一步和第二步,能讓它跑起來就行。
建議先使用安裝包命令行安裝,不要使用管理工具安裝。
另外:Hadoop1.0知道它就行了,現在都用Hadoop 2.0.
1.4 試試使用Hadoop
HDFS目錄操作命令;
上傳、下載文件命令;
提交運行MapRece示常式序;
打開Hadoop WEB界面,查看Job運行狀態,查看Job運行日誌。
知道Hadoop的系統日誌在哪裡。
1.5 你該了解它們的原理了
MapRece:如何分而治之;
HDFS:數據到底在哪裡,什麼是副本;
Yarn到底是什麼,它能幹什麼;
NameNode到底在幹些什麼;
ResourceManager到底在幹些什麼;
1.6 自己寫一個MapRece程序
請仿照WordCount例子,自己寫一個(照抄也行)WordCount程序,
打包並提交到Hadoop運行。
你不會Java?Shell、python都可以,有個東西叫Hadoop Streaming。
如果你認真完成了以上幾步,恭喜你,你的一隻腳已經進來了。
第二章:更高效的WordCount
2.1 學點SQL吧
你知道資料庫嗎?你會寫SQL嗎?
如果不會,請學點SQL吧。
2.2 SQL版WordCount
在1.6中,你寫(或者抄)的WordCount一共有幾行代碼?
給你看看我的:
SELECT word,COUNT(1) FROM wordcount GROUP BY word;
這便是SQL的魅力,編程需要幾十行,甚至上百行代碼,我這一句就搞定;使用SQL處理分析Hadoop上的數據,方便、高效、易上手、更是趨勢。不論是離線計算還是實時計算,越來越多的大數據處理框架都在積極提供SQL介面。
2.3 SQL On Hadoop之Hive
什麼是Hive?官方給的解釋是:
The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax.
為什麼說Hive是數據倉庫工具,而不是資料庫工具呢?有的朋友可能不知道數據倉庫,數據倉庫是邏輯上的概念,底層使用的是資料庫,數據倉庫中的數據有這兩個特點:最全的歷史數據(海量)、相對穩定的;所謂相對穩定,指的是數據倉庫不同於業務系統資料庫,數據經常會被更新,數據一旦進入數據倉庫,很少會被更新和刪除,只會被大量查詢。而Hive,也是具備這兩個特點,因此,Hive適合做海量數據的數據倉庫工具,而不是資料庫工具。
2.4 安裝配置Hive
請參考1.1 和 1.2 完成Hive的安裝配置。可以正常進入Hive命令行。
2.5 試試使用Hive
請參考1.1 和 1.2 ,在Hive中創建wordcount表,並運行2.2中的SQL語句。
在Hadoop WEB界面中找到剛才運行的SQL任務。
看SQL查詢結果是否和1.4中MapRece中的結果一致。
2.6 Hive是怎麼工作的
明明寫的是SQL,為什麼Hadoop WEB界面中看到的是MapRece任務?
2.7 學會Hive的基本命令
創建、刪除表;
載入數據到表;
下載Hive表的數據;
請參考1.2,學習更多關於Hive的語法和命令。
如果你已經按照《寫給大數據開發初學者的話》中第一章和第二章的流程認真完整的走了一遍,那麼你應該已經具備以下技能和知識點:
從上面的學習,你已經了解到,HDFS是Hadoop提供的分布式存儲框架,它可以用來存儲海量數據,MapRece是Hadoop提供的分布式計算框架,它可以用來統計和分析HDFS上的海量數據,而Hive則是SQL On Hadoop,Hive提供了SQL介面,開發人員只需要編寫簡單易上手的SQL語句,Hive負責把SQL翻譯成MapRece,提交運行。
此時,你的」大數據平台」是這樣的:
那麼問題來了,海量數據如何到HDFS上呢?
第三章:把別處的數據搞到Hadoop上
此處也可以叫做數據採集,把各個數據源的數據採集到Hadoop上。
3.1 HDFS PUT命令
這個在前面你應該已經使用過了。
put命令在實際環境中也比較常用,通常配合shell、python等腳本語言來使用。
建議熟練掌握。
3.2 HDFS API
HDFS提供了寫數據的API,自己用編程語言將數據寫入HDFS,put命令本身也是使用API。
實際環境中一般自己較少編寫程序使用API來寫數據到HDFS,通常都是使用其他框架封裝好的方法。比如:Hive中的INSERT語句,Spark中的saveAsTextfile等。
建議了解原理,會寫Demo。
3.3 Sqoop
Sqoop是一個主要用於Hadoop/Hive與傳統關系型資料庫Oracle/MySQL/SQLServer等之間進行數據交換的開源框架。
就像Hive把SQL翻譯成MapRece一樣,Sqoop把你指定的參數翻譯成MapRece,提交到Hadoop運行,完成Hadoop與其他資料庫之間的數據交換。
自己下載和配置Sqoop(建議先使用Sqoop1,Sqoop2比較復雜)。
了解Sqoop常用的配置參數和方法。
使用Sqoop完成從MySQL同步數據到HDFS;
使用Sqoop完成從MySQL同步數據到Hive表;
PS:如果後續選型確定使用Sqoop作為數據交換工具,那麼建議熟練掌握,否則,了解和會用Demo即可。
3.4 Flume
Flume是一個分布式的海量日誌採集和傳輸框架,因為「採集和傳輸框架」,所以它並不適合關系型資料庫的數據採集和傳輸。
Flume可以實時的從網路協議、消息系統、文件系統採集日誌,並傳輸到HDFS上。
因此,如果你的業務有這些數據源的數據,並且需要實時的採集,那麼就應該考慮使用Flume。
下載和配置Flume。
使用Flume監控一個不斷追加數據的文件,並將數據傳輸到HDFS;
PS:Flume的配置和使用較為復雜,如果你沒有足夠的興趣和耐心,可以先跳過Flume。
3.5 阿里開源的DataX
之所以介紹這個,是因為我們公司目前使用的Hadoop與關系型資料庫數據交換的工具,就是之前基於DataX開發的,非常好用。
可以參考我的博文《異構數據源海量數據交換工具-Taobao DataX 下載和使用》。
現在DataX已經是3.0版本,支持很多數據源。
你也可以在其之上做二次開發。
PS:有興趣的可以研究和使用一下,對比一下它與Sqoop。
如果你認真完成了上面的學習和實踐,此時,你的」大數據平台」應該是這樣的:
第四章:把Hadoop上的數據搞到別處去
前面介紹了如何把數據源的數據採集到Hadoop上,數據到Hadoop上之後,便可以使用Hive和MapRece進行分析了。那麼接下來的問題是,分析完的結果如何從Hadoop上同步到其他系統和應用中去呢?
其實,此處的方法和第三章基本一致的。
4.1 HDFS GET命令
把HDFS上的文件GET到本地。需要熟練掌握。
4.2 HDFS API
同3.2.
4.3 Sqoop
同3.3.
使用Sqoop完成將HDFS上的文件同步到MySQL;
使用Sqoop完成將Hive表中的數據同步到MySQL;
4.4 DataX
同3.5.
如果你認真完成了上面的學習和實踐,此時,你的」大數據平台」應該是這樣的:
如果你已經按照《寫給大數據開發初學者的話2》中第三章和第四章的流程認真完整的走了一遍,那麼你應該已經具備以下技能和知識點:
知道如何把已有的數據採集到HDFS上,包括離線採集和實時採集;
你已經知道sqoop(或者還有DataX)是HDFS和其他數據源之間的數據交換工具;
你已經知道flume可以用作實時的日誌採集。
從前面的學習,對於大數據平台,你已經掌握的不少的知識和技能,搭建Hadoop集群,把數據採集到Hadoop上,使用Hive和MapRece來分析數據,把分析結果同步到其他數據源。
接下來的問題來了,Hive使用的越來越多,你會發現很多不爽的地方,特別是速度慢,大多情況下,明明我的數據量很小,它都要申請資源,啟動MapRece來執行。
第五章:快一點吧,我的SQL
其實大家都已經發現Hive後台使用MapRece作為執行引擎,實在是有點慢。
因此SQL On Hadoop的框架越來越多,按我的了解,最常用的按照流行度依次為SparkSQL、Impala和Presto.
這三種框架基於半內存或者全內存,提供了SQL介面來快速查詢分析Hadoop上的數據。關於三者的比較,請參考1.1.
我們目前使用的是SparkSQL,至於為什麼用SparkSQL,原因大概有以下吧:
使用Spark還做了其他事情,不想引入過多的框架;
Impala對內存的需求太大,沒有過多資源部署;
5.1 關於Spark和SparkSQL
什麼是Spark,什麼是SparkSQL。
Spark有的核心概念及名詞解釋。
SparkSQL和Spark是什麼關系,SparkSQL和Hive是什麼關系。
SparkSQL為什麼比Hive跑的快。
5.2 如何部署和運行SparkSQL
Spark有哪些部署模式?
如何在Yarn上運行SparkSQL?
使用SparkSQL查詢Hive中的表。
PS: Spark不是一門短時間內就能掌握的技術,因此建議在了解了Spark之後,可以先從SparkSQL入手,循序漸進。
關於Spark和SparkSQL,可參考http://lxw1234.com/archives/category/spark
如果你認真完成了上面的學習和實踐,此時,你的」大數據平台」應該是這樣的:
第六章:一夫多妻制
請不要被這個名字所誘惑。其實我想說的是數據的一次採集、多次消費。
在實際業務場景下,特別是對於一些監控日誌,想即時的從日誌中了解一些指標(關於實時計算,後面章節會有介紹),這時候,從HDFS上分析就太慢了,盡管是通過Flume採集的,但Flume也不能間隔很短就往HDFS上滾動文件,這樣會導致小文件特別多。
為了滿足數據的一次採集、多次消費的需求,這里要說的便是Kafka。
6.1 關於Kafka
什麼是Kafka?
Kafka的核心概念及名詞解釋。
6.2 如何部署和使用Kafka
使用單機部署Kafka,並成功運行自帶的生產者和消費者例子。
使用Java程序自己編寫並運行生產者和消費者程序。
Flume和Kafka的集成,使用Flume監控日誌,並將日誌數據實時發送至Kafka。
如果你認真完成了上面的學習和實踐,此時,你的」大數據平台」應該是這樣的:
這時,使用Flume採集的數據,不是直接到HDFS上,而是先到Kafka,Kafka中的數據可以由多個消費者同時消費,其中一個消費者,就是將數據同步到HDFS。
如果你已經按照《寫給大數據開發初學者的話3》中第五章和第六章的流程認真完整的走了一遍,那麼你應該已經具備以下技能和知識點:
從前面的學習,你已經掌握了大數據平台中的數據採集、數據存儲和計算、數據交換等大部分技能,而這其中的每一步,都需要一個任務(程序)來完成,各個任務之間又存在一定的依賴性,比如,必須等數據採集任務成功完成後,數據計算任務才能開始運行。如果一個任務執行失敗,需要給開發運維人員發送告警,同時需要提供完整的日誌來方便查錯。
第七章:越來越多的分析任務
不僅僅是分析任務,數據採集、數據交換同樣是一個個的任務。這些任務中,有的是定時觸發,有點則需要依賴其他任務來觸發。當平台中有幾百上千個任務需要維護和運行時候,僅僅靠crontab遠遠不夠了,這時便需要一個調度監控系統來完成這件事。調度監控系統是整個數據平台的中樞系統,類似於AppMaster,負責分配和監控任務。
7.1 Apache Oozie
1. Oozie是什麼?有哪些功能?
2. Oozie可以調度哪些類型的任務(程序)?
3. Oozie可以支持哪些任務觸發方式?
4. 安裝配置Oozie。
第八章:我的數據要實時
在第六章介紹Kafka的時候提到了一些需要實時指標的業務場景,實時基本可以分為絕對實時和准實時,絕對實時的延遲要求一般在毫秒級,准實時的延遲要求一般在秒、分鍾級。對於需要絕對實時的業務場景,用的比較多的是Storm,對於其他准實時的業務場景,可以是Storm,也可以是Spark Streaming。當然,如果可以的話,也可以自己寫程序來做。
8.1 Storm
1. 什麼是Storm?有哪些可能的應用場景?
2. Storm由哪些核心組件構成,各自擔任什麼角色?
3. Storm的簡單安裝和部署。
4. 自己編寫Demo程序,使用Storm完成實時數據流計算。
8.2 Spark Streaming
1. 什麼是Spark Streaming,它和Spark是什麼關系?
2. Spark Streaming和Storm比較,各有什麼優缺點?
3. 使用Kafka + Spark Streaming,完成實時計算的Demo程序。
如果你認真完成了上面的學習和實踐,此時,你的」大數據平台」應該是這樣的:
至此,你的大數據平台底層架構已經成型了,其中包括了數據採集、數據存儲與計算(離線和實時)、數據同步、任務調度與監控這幾大模塊。接下來是時候考慮如何更好的對外提供數據了。
第九章:我的數據要對外
通常對外(業務)提供數據訪問,大體上包含以下方面:
離線:比如,每天將前一天的數據提供到指定的數據源(DB、FILE、FTP)等;離線數據的提供可以採用Sqoop、DataX等離線數據交換工具。
實時:比如,在線網站的推薦系統,需要實時從數據平台中獲取給用戶的推薦數據,這種要求延時非常低(50毫秒以內)。
根據延時要求和實時數據的查詢需要,可能的方案有:HBase、Redis、MongoDB、ElasticSearch等。
OLAP分析:OLAP除了要求底層的數據模型比較規范,另外,對查詢的響應速度要求也越來越高,可能的方案有:Impala、Presto、SparkSQL、Kylin。如果你的數據模型比較規模,那麼Kylin是最好的選擇。
即席查詢:即席查詢的數據比較隨意,一般很難建立通用的數據模型,因此可能的方案有:Impala、Presto、SparkSQL。
這么多比較成熟的框架和方案,需要結合自己的業務需求及數據平台技術架構,選擇合適的。原則只有一個:越簡單越穩定的,就是最好的。
如果你已經掌握了如何很好的對外(業務)提供數據,那麼你的「大數據平台」應該是這樣的:
第十章:牛逼高大上的機器學習
關於這塊,我這個門外漢也只能是簡單介紹一下了。數學專業畢業的我非常慚愧,很後悔當時沒有好好學數學。
在我們的業務中,遇到的能用機器學習解決的問題大概這么三類:
分類問題:包括二分類和多分類,二分類就是解決了預測的問題,就像預測一封郵件是否垃圾郵件;多分類解決的是文本的分類;
聚類問題:從用戶搜索過的關鍵詞,對用戶進行大概的歸類。
推薦問題:根據用戶的歷史瀏覽和點擊行為進行相關推薦。
大多數行業,使用機器學習解決的,也就是這幾類問題