當前位置:首頁 » 操作系統 » xrd資料庫

xrd資料庫

發布時間: 2022-05-20 16:19:42

『壹』 您好,請問您是有xrd資料庫

還需要不,鈮酸鉀PDF挺多的,你需要哪種空間群的

『貳』 從XRD譜圖中可以得到什麼信息

怎麼通過XRD圖譜判斷是什麼物質
角度θ為布拉格角或稱為掠射角.關於XRD的測量原理比較復雜,要知道晶體學和X射線知識.簡單的來說(對粉末多晶):當單色X射線照射到樣品時,若其中一個晶粒的一組面網(hkl)取向和入射線夾角為θ,滿足衍射條件,則在衍射角2θ(衍射線與入射X射線的延長線的夾角)處產生衍射.
但在實際應用中,我們只需用儀器做出XRD圖譜,然後根據pdf卡片來知道所測物質的種類,和結構.pdf卡片是X射線衍射化學分析聯合會建立的物質的衍射資料庫.他們制備了大量的物質,使用者只要把自己的圖譜和標准圖譜對比就能知道自己的物質種類及結構.隨著計算機技術的發展,現在都是通過導入研究者測試得到的XRD圖譜,電腦軟體(如Jade)通過匹配度尋找與之比配的pdf卡片,很方便.
在XRD中,不僅可以定性得到物質的種類,相結構.而且可以通過謝樂公式得到晶粒尺寸以及通過精修手段得到晶胞常數.

『叄』 如何通過粉末XRD數據做晶體結構解析

這是有專門的軟體進行分析的,比如jade等,因為每種物質(新合成的除外)都有其特定的衍射峰,是有國際通用的資料庫的,因此可以用你測的結果和資料庫相比對,就可以得知是哪種物質及其屬於哪種晶系等。

『肆』 怎麼分析XRD圖譜

1、XRD圖中有很多信息,如組成(物相)和結構、粒度、應力、結晶度等,其分析方法各不相同。

2、比如,若是做物相分析,樣品是已知物質的,你只要將XRD圖譜與標准圖進行比對就可以大致判斷,一般設備中都會提供已知物資料庫,供調用比對。

3、當然雜相分析就需要一定的經驗了,不是一兩句話就能說清楚的。

4、若是做的未知物(新物相),則必須做純,再用相應軟體如PowderX等來處理,也有一定的技巧。

(4)xrd資料庫擴展閱讀:

分析XRD圖譜常用的軟體:

有Pcpdgwin,Search match,High score和Jade,比較常用的是後兩種。

一、High score

1、可以調用的數據格式更多。

2、窗口設置更人性化,用戶可以自己選擇。

3、譜線位置的顯示方式,可以讓你更直接地看到檢索的情況

4、手動加峰或減峰更加方便。

5、可以對衍射圖進行平滑等操作,使圖更漂亮。

6、可以更改原始數據的步長、起始角度等參數。

7、可以進行0點的校正。

8、可以對峰的外形進行校正。

9、可以進行半定量分析。

10、 物相檢索更加方便,檢索方式更多。

11、可以編寫批處理命令,對於同一系列的衍射圖,一鍵搞定。

二、Jade

和Highscore相比自動檢索功能少差,但它有比之更多的功能。

1、它可以進行衍射峰的指標化。

2、進行晶格參數的計算。

3、根據標樣對晶格參數進行校正。

4、輕松計算峰的面積、質心。

5、出圖更加方便,你可以在圖上進行更加隨意的編輯。

此外,還有Pcpdgwin和searc。

『伍』 什麼是xrd分析

研究X射線波長和一般晶體晶格參數發現,兩者的尺寸是數值相當或比較接近,從而有科學家斷言,晶體晶格是X射線發生衍射現象的天然柵欄!後來果然得到了驗證。晶體是這樣;非晶體的物質沒有這種有規律的格子排列格局,當然就不能獲得X射線衍射現象了。

物質有沒有固定的熔點、沸點,並沒有驗證是一個純凈物、包括晶體的獨有的予以可區別其它物質的測試屬性。晶體的熔點、沸點是相對比較固定,熔程也是比較窄,但擁有這一熔點、沸點的物質未必僅此一個;有些非晶體的純凈物,其熔點沸點也會在一定數值、熔程也會很窄。總之,可能在二十世紀初期還可以這樣做,但現在更科學的大型精密儀器分析法出現後,就不被認同了。

X射線衍射原理及應用介紹:
特徵X射線及其衍射 X射線是一種波長很短(約為20~0.06 nm)的電磁波,能穿透一定厚度的物質,並能使熒光物質發光、照相乳膠感光、氣體電離。在用電子束轟擊金屬「靶」產生的X射線中,包含與靶中各種元素對應的具有特定波長的X射線,稱為特徵(或標識)X射線。考慮到X射線的波長和晶體內部原子間的距離(10^(-8)cm)相近,1912年德國物理學家勞厄(M.von Laue)提出一個重要的科學預見:晶體可以作為X射線的空間衍射光柵,即當一束X射線通過晶體時將會發生衍射;衍射波疊加的結果使射線的強度在某些方向上增強、而在其它方向上減弱;分析在照相底片上獲得的衍射花樣,便可確定晶體結構。這一預見隨後為實驗所驗證。1913年英國物理學家布拉格父子(W.H.Bragg,W.L.Bragg)在勞厄發現的基礎上,不僅成功地測定了NaCl、KCl等的晶體結構,並提出了作為晶體衍射基礎的著名公式——布拉格定律:
2d sinθ=nλ,式中,λ為X射線的波長,衍射的級數n為任何正整數。
當X射線以掠角θ(入射角的餘角,又稱為布拉格角)入射到某一具有d點陣平面間距的原子面上時,在滿足布拉格方程時,會在反射方向上獲得一組因疊加而加強的衍射線。

X射線衍射應用:
1、當X射線波長λ已知時(選用固定波長的特徵X射線),採用細粉末或細粒多晶體的線狀樣品,可從一堆任意取向的晶體中,從每一θ角符合布拉格條件的反射面得到反射。測出θ後,利用布拉格公式即可確定點陣平面間距d、晶胞大小和晶胞類型;
2、利用X射線結構分析中的粉末法或德拜-謝樂(Debye—Scherrer)法的理論基礎,測定衍射線的強度,就可進一步確定晶胞內原子的排布。
3、而在測定單晶取向的勞厄法中所用單晶樣品保持固定不變動(即θ不變),以輻射線束的波長λ作為變數來保證晶體中一切晶面都滿足布拉格條件,故選用連續X射線束。再把結構已知晶體(稱為分析晶體)用來作測定,則在獲得其衍射線方向θ後,便可計算X射線的波長λ,從而判定產生特徵X射線的元素。這便是X射線譜術,可用於分析金屬和合金的成分。
4、X射線衍射在金屬學中的應用
X射線衍射現象發現後,很快被用於研究金屬和合金的晶體結構,出現了許多具有重大意義的結果。如韋斯特格倫(A.Westgren)(1922年)證明α、β和δ鐵都是體心立方結構,β-Fe並不是一種新相;而鐵中的α—→γ相轉變實質上是由體心立方晶體轉變為面心立方晶體,從而最終否定了β-Fe硬化理論。隨後,在用X射線測定眾多金屬和合金的晶體結構的同時,在相圖測定以及在固態相變和范性形變研究等領域中均取得了豐碩的成果。如對超點陣結構的發現,推動了對合金中有序無序轉變的研究;對馬氏體相變晶體學的測定,確定了馬氏體和奧氏體的取向關系;對鋁銅合金脫溶的研究等等。目前 X射線衍射(包括X射線散射)已經成為研究晶體物質和某些非晶態物質微觀結構的有效方法。
在金屬中的主要應用有以下方面:
(1)物相分析 是X射線衍射在金屬中用得最多的方面,又分為定性分析和定量分析。定性分析是把對待測材料測得的點陣平面間距及衍射強度與標准物相的衍射數據進行比較,以確定材料中存在的物相;定量分析則根據衍射花樣的強度,確定待測材料中各相的比例含量。
(2)精密測定點陣參數 常用於相圖的固態溶解度曲線的繪制。溶解度的變化往往引起點陣常數的變化;當達到溶解限後,溶質的繼續增加引起新相的析出,不再引起點陣常數的變化。這個轉折點即為溶解限。另外點陣常數的精密測定可獲得單位晶胞原子數,從而可確定固溶體類型;還可以計算出密度、膨脹系數等有用的物理常數。
(3)取向分析 包括測定單晶取向和多晶的結構(如擇優取向)。測定硅鋼片的取向就是一例。另外,為研究金屬的范性形變過程,如孿生、滑移、滑移面的轉動等,也與取向的測定有關。
(4)晶粒(嵌鑲塊)大小和微觀應力的測定 由衍射花樣的形狀和強度可計算晶粒和微應力的大小。在形變和熱處理過程中這兩者有明顯變化,它直接影響材料的性能。
(5)宏觀應力的測定 宏觀殘留應力的方向和大小,直接影響機器零件的使用壽命。利用測定點陣平面在不同方向上的間距的改變,可計算出殘留應力的大小和方向。
(6)對晶體結構不完整性的研究 包括對層錯、位錯、原子靜態或動態地偏離平衡位置,短程有序,原子偏聚等方面的研究(見晶體缺陷)。
(7)合金相變 包括脫溶、有序無序轉變、母相新相的晶體學關系,等等。
(8)結構分析 對新發現的合金相進行測定,確定點陣類型、點陣參數、對稱性、原子位置等晶體學數據。
(9)液態金屬和非晶態金屬 研究非晶態金屬和液態金屬結構,如測定近程序參量、配位數等。
(10)特殊狀態下的分析 在高溫、低溫和瞬時的動態分析。
此外,小角度散射用於研究電子濃度不均勻區的形狀和大小,X射線形貌術用於研究近完整晶體中的缺陷如位錯線等,也得到了重視。
X射線分析的新發展
金屬X射線分析由於設備和技術的普及已逐步變成金屬研究和材料測試的常規方法。早期多用照相法,這種方法費時較長,強度測量的精確度低。50年代初問世的計數器衍射儀法具有快速、強度測量准確,並可配備計算機控制等優點,已經得到廣泛的應用。但使用單色器的照相法在微量樣品和探索未知新相的分析中仍有自己的特色。從70年代以來,隨著高強度X射線源(包括超高強度的旋轉陽極X射線發生器、電子同步加速輻射,高壓脈沖X射線源)和高靈敏度探測器的出現以及電子計算機分析的應用,使金屬 X射線學獲得新的推動力。這些新技術的結合,不僅大大加快分析速度,提高精度,而且可以進行瞬時的動態觀察以及對更為微弱或精細效應的研究。
5、X射線物相分析
X射線照射晶體物相產生一套特定的粉未衍射圖譜或數據D-I值。其中D-I與晶胞形狀和大小有關,相對強度I/I0,與質點的種類和位置有關。
與人的手指紋相似,每種晶體物相都有自己獨特的XPD譜。不同物相物質即使混在一起,它們各自的特徵衍射信息也會獨立出現,互不幹擾。據此可以把任意純凈的或混合的晶體樣品進行定性或定量分析。
(1) X射線物相定性分析
粉未X射線物相定性分析無須知曉物質晶格常數和晶體結構,只須把實測數據與(粉未衍射標准聯合會)發行的PDF卡片上的標准值核對,就可進行鑒定。
當然這是對那些被測試研究收集到卡片集中的晶相物質而言的,卡片記載的解析結果都可引用。
《粉末衍射卡片集》是目前收集最豐富的多晶體衍射數據集,包括無機化合物,有機化合物,礦物質,金屬和合金等。1969年美國材料測試協會與英、法、加等多國相關協會聯合組成粉末衍射標准聯合會,收集整理、編輯出版PDF卡片,每年達到無機相各一組,每組1500-2000張不等.1967年前後,多晶粉未衍射譜的電子計示示機檢索程序和資料庫相繼推出.日本理學公司衍射射儀即安裝6個檢索程序(1)含947個相的程序;(2)含2716個相的常用相程序;(3)含3549個相的礦物程序;(4)含6000個相的金屬和合金程序;(5)含31799個相的無機相程序(6)含11378個相的有機相程序.每張片尾記錄一個物相。
(2)多相物質定性分析
測XRD譜,得d值及相對強度後查索引,得卡片號碼後查到卡片,在±1%誤差范圍內若解全部數據符合,則可判斷該物質就是卡片所載物相,其晶體結構及有關性能也由卡片而知。這是單一物相定性分析。
多相混合物質的XRD譜是各物相XRD譜的迭加,某一相的譜線位置和強度不因其它物相的存在而改變,除非兩相間物質吸收系數差異較大會互相影響到衍射強度。固熔體的XRD譜則以主晶相的XRD為主。
已知物相組分的多相混合物,或者先嘗試假設各物相組分,它們的XRD譜解析相對要容易得多。分別查出這些單一物相的已知標准衍射數據,d值和強度,將它們綜合到一起,就可以得到核實其有無。如鋼鐵中的δ相(馬氏體或鐵素體)γ相(奧氏體)和碳化物多相。
完全未知的多相混合物,應設法從復相數據中先查核確定一相,再對餘下的數據進行查對。每查出一相就減少一定難度,直至全部解決。當然對於完全未知多相樣品可以了解其來源、用途、物性等推測其組分;通過測試其原子吸收光譜、原子發射光譜,IR、化學分析、X射線熒光分析等測定其物相的化學成分,推測可能存在的物相。查索到時,知道組分名稱的用字順索引查,使用d值索引前,要先將全部衍射強度歸一化,然後分別用一強線、二強線各種組合、三強線各種組合…聯合查找直至查出第一主相。標記其d值,I/I1值。把多餘的d值,I/I1值再重新歸一化,包括與第一主相d值相同的多餘強度值。繼續查找確定第二主相,直至全部物相逐一被查找出來並核對正確無誤。遇到沒被PDF卡收錄的物相時,需按未知物相程序解析指認。
物相定性分析中追求數據吻合程度時,(1)d值比I/I1值更重要,更優先。因為d測試精度高,重現性好;而強度受純度(影響解析度)、結晶度(影響峰形)樣品細微度(同Q值時吸收不同),輻射源波長(同d值,角因子不同)、樣品制備方法(有無擇優取向等)、測試方法(照相法或衍射儀法)等因素影響,不易固定。(2)低角度衍射線比高角度線重要。對不同晶體而言低角度線不易重迭,而高角度線易重迭或被干擾。(3)強線比弱線重要。尤其要重視強度較大的大d值線。

(3) X射線物相定量分析
基本原理和分析
在X射線物相定性分析基礎上的定量分析是根據樣品中某一物相的衍射線積分強度正變化於其含量。不能嚴格正比例的原因是樣品也產生吸收。對經過吸收校正後的的衍射線強度進行計算可確定物相的含量。這種物相定量分析是其它方法,如元素分析、成分組分分析等所不能替代的。
6、結晶度的XRD測定
7、高分子結晶體的X射線衍射研究

『陸』 XRD表示什麼意思,由XRD圖譜怎麼分析物質結構

首先簡單說下原理——
角度θ為布拉格角或稱為掠射角。關於XRD的測量原理比較復雜,要知道晶體學和X射線知識。簡單的來說(對粉末多晶):當單色X射線照射到樣品時,若其中一個晶粒的一組面網(hkl)取向和入射線夾角為θ,滿足衍射條件,則在衍射角2θ(衍射線與入射X射線的延長線的夾角)處產生衍射。
但在實際應用中,我們只需用儀器做出XRD圖譜,然後根據pdf卡片來知道所測物質的種類,和結構。pdf卡片是X射線衍射化學分析聯合會建立的物質的衍射資料庫。他們制備了大量的物質,使用者只要把自己的圖譜和標准圖譜對比就能知道自己的物質種類及結構。隨著計算機技術的發展,現在都是通過導入研究者測試得到的XRD圖譜,電腦軟體(如Jade)通過匹配度尋找與之比配的pdf卡片,很方便。
在XRD中,不僅可以定性得到物質的種類,相結構。而且可以通過謝樂公式得到晶粒尺寸以及通過精修手段得到晶胞常數。

實際操作過程中,一般都能得到一個XRD的測試圖譜,在你盡可能提供多的信息情況下,比如物相的制備方法,所包含的元素等,與標准卡片對比,找到跟你XRD圖譜一樣的標准圖譜,再分析,當然得到的結果中可能有多種物相,那樣你就得根據你圖譜上的峰的位置一條一條地去找卡片庫,匹配,然後就OK了

『柒』 誰有XRD粉末衍射卡片資料庫的比如ICDD的PDFWin,希望是最新的。

單晶的是另一套資料庫 CCDC。至於為什麼不用粉末衍射,如果你合成的配合物是單一組分,並且量較大,測試粉末衍射才有意義。通常,或者說大多數情況下,只得到一兩顆晶體,且產物非均相。同時,粉末衍射圖譜遠比單晶衍射數據復雜,雖然目前在作從粉晶數據進行結構解析這方面的嘗試,但准確性未得到普遍認可。

如果你有CCDC的數據,很容易模擬粉末衍射譜圖。

『捌』 問XRD中ICDD和ICSD資料庫的區別

m_pRecordset->Open("SELECT * FROM ado", // 查詢DemoTable表中所有欄位
m_pConnection.GetInterfacePtr(), // 獲取庫接庫的IDispatch指針
adOpenDynamic,
adLockOptimistic,
adCmdText);
}
catch(_com_error *e)
{
AfxMessageBox(e->ErrorMessage());
}

『玖』 XRD粉末衍射卡片資料庫

http://www.si.net/thread-2889549-1-1.html

『拾』 xrd圖譜怎麼看

XRD圖中有很多信息,如組成(物相)和結構、粒度、應力、結晶度等,其分析方法各不相同。

比如,若是做物相分析,樣品是已知物質的,你只要將XRD圖譜與標准圖進行比對就可以大致判斷,一般設備中都會提供已知物資料庫,供調用比對。若是做的未知物(新物相),則必須做純,再用相應軟體如PowderX等來處理,也有一定的技巧。

(10)xrd資料庫擴展閱讀:

在衍射儀獲得的XRD圖譜上,如果樣品是較好的"晶態"物質,圖譜的特徵是有若干或許多個一般是彼此獨立的很窄的「尖峰」。

如果這些「峰」明顯地變寬,則可以判定樣品中的晶體的顆粒尺寸將小於300nm,可以稱之為"微晶"。

Scherrer (1918)揭示了衍射峰的增寬是對應晶面方向上的原子厚度(層數)不足以在偏離Bragg條件下相干減弱(destructivelyinterference)衍射峰。 當衍射峰寬度增加到接近其高度時(或高度下降到接近其寬度時), 可認為樣品是非晶。

熱點內容
存儲過程性能 發布:2024-10-25 23:35:39 瀏覽:111
同一個ip是不是同一個伺服器 發布:2024-10-25 23:33:15 瀏覽:518
為啥c語言要編譯器啊 發布:2024-10-25 23:32:38 瀏覽:218
快存儲 發布:2024-10-25 23:31:05 瀏覽:286
演算法製造 發布:2024-10-25 23:11:27 瀏覽:886
台式電腦安裝哪個安卓系統好 發布:2024-10-25 23:11:25 瀏覽:114
怎麼樣學電腦編程 發布:2024-10-25 23:10:13 瀏覽:524
安卓手機內存佔用太多如何清理 發布:2024-10-25 23:03:53 瀏覽:910
swift項目編譯 發布:2024-10-25 22:53:12 瀏覽:963
邁銳寶買哪個配置合算 發布:2024-10-25 22:28:59 瀏覽:994