主流推薦演算法
⑴ 計算機視覺領域主流的演算法和方向有哪些
人工智慧是當下很火熱的話題,其與大數據的完美結合應用於多個場景,極大的方便了人類的生活。而人工智慧又包含深度學習和機器學習兩方面的內容。深度學習又以計算機視覺和自然語言處理兩個方向發展的最好,最火熱。大家對於自然語言處理的接觸可能不是很多,但是說起計算機視覺,一定能夠馬上明白,因為我們每天接觸的刷臉支付等手段就會和計算機視覺掛鉤。可以說計算機視覺的應用最為廣泛。
目標跟蹤,就是在某種場景下跟蹤特定對象的過程,在無人駕駛領域中有很重要的應用。目前較為流行的目標跟蹤演算法是基於堆疊自動編碼器的DLT。語義分割,則是將圖像分為像素組,再進行標記和分類。目前的主流演算法都使用完全卷積網路的框架。實例分割,是指將不同類型的實例分類,比如用4種不同顏色來標記4隻貓。目前用於實例分割的主流演算法是Mask R-CNN。
⑵ 3分鍾輕鬆了解個性化推薦演算法
推薦這種體驗除了電商網站,還有新聞推薦、電台音樂推薦、搜索相關內容及廣告推薦,基於數據的個性化推薦也越來越普遍了。今天就針對場景來說說這些不同的個性化推薦演算法吧。
說個性化之前,先提一下非個性化。 非個性化的推薦也是很常見的,畢竟人嘛都有從眾心理,總想知道大家都在看什麼。非個性化推薦的方式主要就是以比較單一的維度加上半衰期去看全局排名,比如,30天內點擊排名,一周熱門排名。
但是只靠非個性化推薦有個弊端,就是馬太效應,點的人越多的,經過推薦點得人有更多。。。強者越強,弱者機會越少就越弱,可能導致兩級分化嚴重,一些比較優質素材就被埋沒了。
所以,為了解決一部分馬太效應的問題,也主要是順應數據化和自動化的模式,就需要增加個性化的推薦(可算說到正題了。。。)個性化的優點是不僅體驗好,而且也大大增加了效率,讓你更快找到你感興趣的東西。YouTube也曾做過實驗測試個性化和非個性化的效果,最終結果顯示個性化推薦的點擊率是同期熱門視頻的兩倍。
1.新聞、視頻、資訊和電台(基於內容推薦)
一般來說,如果是推薦資訊類的都會採用基於內容的推薦,甚至早期的郵件過濾也採用這種方式。
基於內容的推薦方法就是根據用戶過去的行為記錄來向用戶推薦相似額推薦品。簡單來說就是你常常瀏覽科技新聞,那就更多的給你推薦科技類的新聞。
復雜來說,根據行為設計權重,根據不同維度屬性區分推薦品都是麻煩的事,常用的判斷用戶可能會喜歡推薦品程度的餘弦向量公式長這樣,我就不解釋了(已經勾起了我關於高數不好的回憶)。。。
但是,這種演算法缺點是由於內容高度匹配,導致推薦結果的驚喜度較差,而且有冷啟動的問題,對新用戶不能提供可靠的推薦結果。並且,只有維度增加才能增加推薦的精度,但是維度一旦增加計算量也成指數型增長。如果是非實體的推薦品,定義風格也不是一件容易的事,同一個作者的文風和曲風也會發生改變。
2.電商零售類(協同過濾推薦和關聯規則推薦)
說電商推薦那不可能不講到亞馬遜,傳言亞馬遜有三成的銷售額都來自個性化的商品推薦系統。實際上,我自己也常常在這里找到喜歡的書,也願意主動的去看他到底給我推薦了什麼。
一般,電商主流推薦演算法是基於一個這樣的假設,「跟你喜好相似的人喜歡的東西你也很有可能喜歡。」即協同過濾過濾演算法。主要的任務就是找出和你品味最相近的用戶,從而根據最近他的喜好預測你也可能喜歡什麼。
這種方法可以推薦一些內容上差異較大但是又是用戶感興趣的物品,很好的支持用戶發現潛在的興趣偏好。也不需要領域知識,並且隨著時間推移性能提高。但是也存在無法向新用戶推薦的問題,系統剛剛開始時推薦質可能較量差。
電商行業也常常會使用到基於關聯規則的推薦。即以關聯規則為基礎,把已購商品作為規則頭,規則體為推薦對象。比如,你購買了羽毛球拍,那我相應的會向你推薦羽毛球周邊用品。關聯規則挖掘可以發現不同商品在銷售過程中的相關性,在零售業中已經得到了成功的應用。
3.廣告行業(基於知識推薦)
自從可以瀏覽器讀取cookies,甚至獲得年齡屬性等信息,廣告的個性化投放就也可以根據不同場景使用了。
當用戶的行為數據較少時,基於知識的推薦可以幫助我們解決這類問題。用戶必須指定需求,然後系統設法給出解決方式。假設,你的廣告需要指定某地區某年齡段的投放,系統就根據這條規則進行計算。基於知識的推薦在某種程度是可以看成是一種推理技術。這種方法不需要用戶行為數據就能推薦,所以不存在冷啟動問題。推薦結果主要依賴兩種形式,基於約束推薦和基於實例推薦。
4.組合推薦
由於各種推薦方法都有優缺點,所以在實際中,並不像上文講的那樣採用單一的方法進行建模和推薦(我真的只是為了解釋清楚演算法)。。。
在組合方式上,也有多種思路:加權、變換、混合、特徵組合、層疊、特徵擴充、元級別。 並且,為了解決冷啟動的問題,還會相應的增加補足策略,比如根據用戶模型的數據,結合挖掘的各種榜單進行補足,如全局熱門、分類熱門等。 還有一些開放性的問題,比如,需不需要幫助用戶有品味的提升,引導人去更好的生活。
最後,我總想,最好的推薦效果是像一個了解你的朋友一樣跟你推薦,因為他知道你喜歡什麼,最近對什麼感興趣,也總能發現一些有趣的新東西。這讓我想到有一些朋友總會興致勃勃的過來說,嘿,給你推薦個東西,你肯定喜歡,光是聽到這句話我好像就開心起來,也許這就是我喜歡這個功能的原因。
⑶ Amazon的推薦演算法是否稱得上特別優秀
現在在京東、易迅、亞馬遜等看到的主流推薦演算法,一般都是基於物品自身相似性(不依賴於用戶數據,沒有冷啟動問題)、基於用戶瀏覽、喜歡、購買等數據的協同過濾推薦(用戶緯度和商品緯度)。
其實這些推薦演算法的核心思路,是很樸素的。
一、基於物品自身相似度:例如衣服A和衣服B,對於它們在分類、價格段、屬性、風格、品牌定位等等其他屬性緯度的表現,來計算它們之間的相似度,如果相似度高,那麼在有用戶瀏覽A的時候,就可以推薦B(實際當然沒這么簡單)。因為衣服的這些屬性是不依賴於用戶的,所以解決了系統的冷啟動問題,正是不依賴與用戶的行為數據,因此比較死板,完全沒有個性化的推薦。這個演算法的思路很多人都清楚,但是越是簡單的演算法,要達到好的效果就越是難,特別是推薦這種轉化率非常低的演算法。商品有幾十個屬性,對不同分類的商品,並不是所有的屬性都是有必要納入相似度計算的,已經納入的屬性但是重要性也是有區別的,這樣一來,光光給不同類別商品篩選必要屬性以及設置這些屬性在相似度計算中的權重值,就是一項非常浩大的工程了。亞馬遜的推薦系統在全球行業中也是最早的,相信他們在這個問題上肯定有自己一套迅速有效的方法。當然要我來說具體是怎麼樣的,我怎麼可能知道呢^_^,知道了也不告訴你。
二、基於用戶緯度的協同過濾:採集用戶的購買(瀏覽、收藏都行)商品數據,把用戶購買的商品列出來,當作用戶的屬性緯度。例如用戶A購買了商品1、2、3、4、5,用戶B購買了商品1、2、5、6,那麼可以簡單的將12345和1256分別作為A和B的屬性特徵字元串,計算A和B的相似度,經過簡單的聚類將用戶聚成幾個類別(鄰居)。假設A和B同屬於一個聚類,那麼可以稱A和B有比較相似的偏好,繼而可以將A買過而B沒買過的其他商品推薦給B。在這一個流程里,可以發揮的地方有很多:1、用戶的行為數據需要去噪音(買了多少商品以下的用戶不考慮,有代購的不考慮,如何精準的判斷代購,商品時效性的考慮,數據的時間跨度等等);2、計算相似度的時候跟第一點中提到的一樣,並不是所有商品對用戶的描述度都是一樣的。可能價格低的重要程度就沒有昂貴的商品重要。3、通過聚類計算鄰居的時候,聚類演算法又是另一門學科了,或者選擇分類演算法。然後聚類的門檻選擇都是需要很長時間的測試、觀察、修改的,需要時間的積累。4、瀏覽、購買、收藏等歷史數據是不是可以協同過濾。現在很多網站給出的推薦,都不是單一推薦演算法的,一個演算法的輸出可以作為另一個演算法的輸入,可以是多個演算法的輸出綜合篩選,這也是一個需要長時間積累的地方。
⑷ 百度主流相關性演算法有哪些你知道多少
一般是谷歌能走到哪一步,網路也會跟到哪一步。除了PR值的演算法,是基於李彥宏。 這里介紹的主流演算法是—— Simhash演算法 1、主流演算法——Simhash演算法 我們一般判斷文本與文本之間的相關性是很容易的。你演算法的效率,直接決定了你的使用性。 通過此演算法能夠了解網頁間的相關性對比和搜索引擎達到去重的效果。網路和谷歌都有基於此原理。這個大家可以網路一下具體解釋。 2、相關性演算法的對比程度 我們了解演算法,是為了獲得更多的權重。在應用上,我們主要在以下幾個方面。 第一:外鏈的有效性方面。比如,你是旅遊類站點,那麼你做的友鏈都是旅遊類。那麼有些企業站很難找到相關的。那麼可以找,本地的,同行業的。但是我們心裡清楚,相關性的總比不相關性的好。那麼找本地的、同行業的大家都沒有底,但是不管你是找同行業的還是本地的,其實沒有那麼大的影響。 第二,站內相關性。比如說內鏈,現在內鏈的列表都是隨機推薦的。隨機推薦的效果是最差的。隨機推薦的越多,質量就最低,也是網路這次演算法調整的內容之一,那麼那些網站是最多的?醫療站,幾乎是所有行業裡面最普遍的。隨機生成 這里,老師將會讓你徹底改變關於相關性的看法。一個是外鏈相關性方面,一個是內鏈相關性方面,一定要看仔細了。 3.外鏈方面的相關性方面 分兩個層次的應用。這里講兩個基礎的兩個概念,一個是谷歌PR值演算法和網路的超文本鏈接演算法,是怎麼來識別權威性的?我們在一個行業為什麼要進行權威性的識別?在任何團隊裡面都有自己的領袖,這個是一個自然現象。因為權威性的指導,能夠給信息帶來信用度。對信用的評級是有一定的層級的。因為搜索引擎是一個信息平台,那麼對信息就必須有一個權威性指導。所以搜索引擎就必須有兩個識別,一個是樞紐,一個是權威性。那麼什麼是樞紐?中心的意思。 權威性的建立,是有一些樞紐組成的。一個權威性站點,是接收了很多樞紐的指向的。樞紐是鏈接,但是鏈接不一定是樞紐。這個就是ICO標簽。如果你想成為權威性網站,那麼你要做的應該是不同行業的鏈接。如果你做的都是同行業的鏈接,你就成為不了權威性網站。 權威是指整個互聯網的權威,還是某個行業?權威可不可以跨行?旅遊行業的權威網站可不可以對酒店行業網站投票?我們所說的 高權重站點,針對的是行業,不是跨行業。 我們聽說一個高權重網站,我們都去發外鏈,以為可以帶來大量權重,其實錯了。他只能給他的那個行業的網站帶來權重。 樞紐鏈接是對不同的權威網站進行指向的。這個鏈接的導出頁面(樞紐),是對不同行業進行導向的。 如果你的網站都是同行業的,那麼你不是樞紐,也不可能稱為權威。做外鏈,請找樞紐 了解搜索引擎的相關性演算法了嗎?
⑸ 目前主流的分類演算法有哪些
當然是RSA。橢圓曲線是比較安全,但是計算量也要大一些。而且,金融是一個比較保守的行業。很可能覺得橢圓曲線還是太「新」了,其安全性需要時間來證明。
⑹ 推薦演算法有哪些
推薦演算法大致可以分為三類:基於內容的推薦演算法、協同過濾推薦演算法和基於知識的推薦演算法。 基於內容的推薦演算法,原理是用戶喜歡和自己關注過的Item在內容上類似的Item,比如你看了哈利波特I,基於內容的推薦演算法發現哈利波特II-VI,與你以前觀看的在內容上面(共有很多關鍵詞)有很大關聯性,就把後者推薦給你,這種方法可以避免Item的冷啟動問題(冷啟動:如果一個Item從沒有被關注過,其他推薦演算法則很少會去推薦,但是基於內容的推薦演算法可以分析Item之間的關系,實現推薦),弊端在於推薦的Item可能會重復,典型的就是新聞推薦,如果你看了一則關於MH370的新聞,很可能推薦的新聞和你瀏覽過的,內容一致;另外一個弊端則是對於一些多媒體的推薦(比如音樂、電影、圖片等)由於很難提內容特徵,則很難進行推薦,一種解決方式則是人工給這些Item打標簽。 協同過濾演算法,原理是用戶喜歡那些具有相似興趣的用戶喜歡過的商品,比如你的朋友喜歡電影哈利波特I,那麼就會推薦給你,這是最簡單的基於用戶的協同過濾演算法(user-based collaboratIve filtering),還有一種是基於Item的協同過濾演算法(item-based collaborative filtering),這兩種方法都是將用戶的所有數據讀入到內存中進行運算的,因此成為Memory-based Collaborative Filtering,另一種則是Model-based collaborative filtering,包括Aspect Model,pLSA,LDA,聚類,SVD,Matrix Factorization等,這種方法訓練過程比較長,但是訓練完成後,推薦過程比較快。 最後一種方法是基於知識的推薦演算法,也有人將這種方法歸為基於內容的推薦,這種方法比較典型的是構建領域本體,或者是建立一定的規則,進行推薦。 混合推薦演算法,則會融合以上方法,以加權或者串聯、並聯等方式盡心融合。 當然,推薦系統還包括很多方法,其實機器學習或者數據挖掘裡面的方法,很多都可以應用在推薦系統中,比如說LR、GBDT、RF(這三種方法在一些電商推薦裡面經常用到),社交網路裡面的圖結構等,都可以說是推薦方法。
⑺ 主流的推薦系統使用的演算法有哪些
SYBASE DB2 ORACLE MySQL ACCESS VF Foxpro MS SQL Server Informix PostgreSQL
⑻ 簡要智能閱讀中智能推薦的技術原理
智能推薦演算法總的來說分為兩種:基於內容的推薦演算法和協同過濾推薦演算法。
基於內容的推薦演算法:
根據內容的相似度(靜態的東西)進行推薦,內容不好提取的可以採取貼標簽的形式來區分計算內容的相似程度。然後根據用戶的喜好設置,關注等進行相似內容推薦。
協同過濾推薦演算法:
根據動態信息來進行推薦,即推薦的過程是自動的,推薦結果的產生是系統從用戶的購買行為或瀏覽記錄等隱式信息拿到的,無需用戶通過填表格等方式來明確自己的喜好。因為這些數據都是要讀到內存中進行運算的,所以又叫基於內存的協同過濾(Memory-based Collaborative Filtering),另一種協同過濾演算法則是基於模型的協同過濾(Model-based Collaborative Filtering);m個物品,m個用戶的數據,只有部分用戶和部分數據之間是有評分數據的,其它部分評分是空白,此時我們要用已有的部分稀疏數據來預測那些空白的物品和數據之間的評分關系,找到最高評分的物品推薦給用戶。對於這個問題,用機器學習的思想來建模解決,主流的方法可以分為:用關聯演算法,聚類演算法,分類演算法,回歸演算法,矩陣分解,神經網路,圖模型以及隱語義模型來解決。
(https://www.cnblogs.com/chenliyang/p/6548306.html)
而基於內存的協同過濾又有兩種:
基於user的協同過濾(用戶相似度):通過相似用戶的喜好來推薦
基於item的協同過濾(內容相似度):通過用戶對項目的不同評分推薦可能讓用戶打高評分的項目,是項目之間的相似度。
任何一種單一推薦演算法都有缺點,我們在實際項目中,可以採用混合推薦演算法,融合以上方法,通過串聯並聯等融合,構造出自己的一套推薦體系。
⑼ 推薦演算法有哪些
這種形式一般可以按推薦引擎的演算法分,主要有基於協同過濾、基於內容推薦等演算法。 「買過此商品的人,百分之多少還買過其他啥啥商品」:協同過濾item-based filtering 「和你興趣相似的人,還買過其他啥啥商品」:協同過濾 user-based filtering 「相關商品推薦」:基於內容推薦content-based 「猜你喜歡」 一般混合使用推薦演算法。
⑽ 傳統視頻網站的人工推薦機制與新興的短視頻平台的大數據演算法推薦機制分別有哪
摘要 一、短視頻平台的演算法推薦機制