資料庫上或
① 資料庫中的行或列有次序嗎
沒有,不過你通過代碼進行對資料庫讀寫,這個時候列的次序肯定不能變動。
② 什麼是資料庫
資料庫就是儲存數據的地方。在電腦中,在內存中,在硬碟中的東西都是存儲在資料庫中的數據。而這些數據所待的地方就叫做資料庫。也可以稱為電子化的「文件櫃」。
在計算機科學與應用中的資料庫意味著今後數據會越來越龐大,也意味著數據在以後的發展中在重多的科學還有應用中要運用到更多的數據。
(2)資料庫上或擴展閱讀:
資料庫管理系統可以依據它所支持的資料庫模型來作分類,例如關系式、XML;或依據所支持的計算機類型來作分類,例如伺服器群集、或依據所用查詢語言來作分類,例如sql、XQuery;或依據性能沖量重點來作分類,例如最大規模、最高運行速度的分類方式。
不論使用哪種分類方式,一些DBMS能夠跨類別,同時支持多種查詢語言。早期比較流行的資料庫模型有三種,而在當今的互聯網中最常見的就是關系型資料庫和非關系型資料庫。
③ 資料庫中邏輯運算符有哪些
資料庫中邏輯運算符有:「非」(¬)、「與」(∧)、「或」(∨)、「條件」(→)以及「雙條件」(↔)。「非」是一個一元操作符,它只操作一項(¬ P)等。
注意,符號「與」(∧)和交集(∩),「或」(∨)和並集(∪)的相似性。這不是巧合:交集的定義使用「與」,並集的定義是用「或」。
在形式邏輯中,邏輯運算符或邏輯聯結詞把語句連接成更復雜的復雜語句。例如,假設有兩個邏輯命題,分別是「正在下雨」和「我在屋裡」,我們可以將它們組成復雜命題「正在下雨,並且我在屋裡」或「沒有正在下雨」或「如果正在下雨,那麼我在屋裡」。
一個將兩個語句組成的新的語句或命題叫做復合語句或復合命題。
(3)資料庫上或擴展閱讀
sql語句結構
1、數據查詢語言(DQL:Data Query Language):其語句,也稱為「數據檢索語句」,用以從表中獲得數據,確定數據怎樣在應用程序給出。
保留字SELECT是DQL(也是所有SQL)用得最多的動詞,其他DQL常用的保留字有WHERE,ORDER BY,GROUP BY和HAVING。這些DQL保留字常與其它類型的SQL語句一起使用。
2、數據操作語言(DML:Data Manipulation Language):其語句包括動詞INSERT、UPDATE和DELETE。它們分別用於添加、修改和刪除。
3、事務控制語言(TCL):它的語句能確保被DML語句影響的表的所有行及時得以更新。包括COMMIT(提交)命令、SAVEPOINT(保存點)命令、ROLLBACK(回滾)命令。
④ 資料庫中常用的英語單詞有哪些
下列是一些資料庫中經常碰到的英文單詞:
Access method(訪問方法):此步驟包括從文件中存儲和檢索記錄。
Alias(別名):某屬性的另一個名字。在SQL中,可以用別名替換表名。
Alternate keys(備用鍵,ER/關系模型):在實體/表中沒有被選為主健的候選鍵。
Anomalies(異常)參見更新異常(update anomalies)
Application design(應用程序設計):資料庫應用程序生命周期的一個階段,包括設計用戶界面以及使用和處理資料庫的應用程序。
Attribute(屬性)(關系模型):屬性是關系中命名的列。
Attribute(屬性)(ER模型):實體或關系中的一個性質。
Attribute inheritance(屬性繼承):子類成員可以擁有其特有的屬性,並且繼承那些與超類有關的屬性的過程。
Base table(基本表):一個命名的表,其記錄物理的存儲在資料庫中。
Binary relationship(二元關系):一個ER術語,用於描述兩個實體間的關系。例如,panch Has Staff。
Bottom-up approach(自底向上方法):用於資料庫設計,一種設計方法學,他從標識每個設計組建開始,然後將這些組件聚合成一個大的單元。在資料庫設計中,可以從表示屬性開始底層設計,然後
將這些屬性組合在一起構成代表實體和關系的表。
Business rules(業務規則):由用戶或資料庫的管理者指定的附加規則。
Candidate key(候選鍵,ER關系模型):僅包含唯一標識實體所必須得最小數量的屬性/列的超鍵。
Cardinality(基數):描述每個參與實體的可能的關系數目。
Centralized approach(集中化方法,用於資料庫設計):將每個用戶試圖的需求合並成新資料庫應用程序的一個需求集合
Chasm trap(深坑陷阱):假設實體間存在一根,但某些實體間不存在通路。
Client(客戶端):向一個或多個伺服器請求服務的軟體應用程序。
Clustering field(群集欄位):記錄總的任何用於群集(集合)航記錄的非鍵欄位,這些行在這個欄位上有相同的值。
Clustering index(群集索引):在文件的群集欄位上定義的索引。一個文件最多有一個主索引或一個群集索引。
Column(列):參加屬性(attribute)。
Complex relationship(復雜關系):度數大於2的關系。
Composite attribute(復合屬性):由多個簡單組件組成的屬性。
Composite key(復合鍵):包含多個列的主健。
Concurrency control(並發控制):在多用戶環境下同時執行多個十五並保證數據完整性的一個DBMS服務。
Constraint(約束):資料庫不允許包含錯誤數據的一致性規則。
Data conversion and loading(數據轉換和載入):資料庫應用生命周期重的一個階段,包括轉換現有數據到新資料庫中以及醬下耨應用程序轉換到新的資料庫上運行。
Data dictionary(數據字典):參見系統目錄(system catalog)。
Data independence(數據獨立性):使用數據的應用程序的數據描述部分。這意味著,如果將新的數據結構添加到資料庫中,或者資料庫中現有的結構被修改了,那麼使用此資料庫的就會受到影響,除
非應用程序不直接依賴於被修改的部分。
Data model(數據模型):描述數據、數據間關系以及數據的約束的概念的一個集成的集合。
Data rendancy(數據冗餘):參見冗餘數據(rendant data)。
Data security(數據安全):包括對資料庫對象(如表和視圖)的訪問和使用以及用戶可以在這些對象上實施的操作。
Database(資料庫):是邏輯上相關的數據(以及這些數據的描述)的一個共享的集合,用於解決公司對信息的需求。
Database design(資料庫設計):資料庫應用生命周期中的一個階段,包括創建一個支持公司的操作和目標的資料庫的設計。
Database integrity(資料庫完整性):指存儲數據的正確定和一致性。完整性通常用約束來表達。
Database Management System,DBMS(資料庫管理系統):一個能夠讓用戶定義、創建和維護資料庫並控制對資料庫的訪問的軟體系統。
Database planning(資料庫規劃):能盡可能有效的實現資料庫應用的各階段的管理活動。
Database server(資料庫伺服器):同伺服器。
DBMS engine(DBMS引擎):同伺服器。
DBMS selection(DBMS選擇):資料庫應用生命周期中的一個階段,包括選擇一個合適的DBMS來支持資料庫應用。
Degree of a relationship(關系的度):一個關系中參與的實體的個數。
Denormalization(反規范化):形式上,這個術語指的是對基本表結構的修改,這樣新的表比原始的表的規范化程度要低。但也可以用此屬於更寬泛地形容將兩個表和並成一個新表的情形,而這個新表
與原來的表具有相同的範式,但比原表包含更多的空值。
Derived attribute(派生屬性):表示其值可以從一個相關屬性和屬性集的值派生得到的屬性,這個屬性在實體中不是必須的。
Design methodology(設計方法學):一種結構化的方法,它使用過程、工具和文檔來支持和簡化設計過程。
Disjoint constraint(無連接約束):描述子類的成員間的關系,並指明超類某個成員是否有可能成為一個或多個子類的成員。
Domain(域):一個或多個屬性的取值范圍。
Entity(實體):具有相同性質的對象的集合,它是由用戶或公司標識並可獨立存在的。
Entity integrity(實體完整性):在一個基本表中,主健列的值不能為空。
Entity occurrence(實體出現):實體中的一個唯一可標識的對象。
Entity-Relationship model(實體關系模型):公司的實體、屬性和關系的詳細邏輯表示。
Fact-finding(事實發現):使用諸如面談和提問等技術收集關於系統的事實、需求和性能的形式化過程。
Fan trap(扇形陷阱):但從第三個實體扇出的兩個實體有1:*關系時出現扇形陷阱,但這兩個實體在他們之間應該有直接關系以提供必要的信息
Field(欄位):同元組(Tuple)。
File(文件):存儲在副主存儲器中的相關記錄的一個命名集合。
File-based system(基於文件的系統):一個文件集合,用來管理(創建、插入、刪除、更新和檢索)一個或多個文件中的數據,並產生基於這些文件中的數據的應用(通常是報表)。
File organization(文件組織):當文件存儲在磁碟上時,對文件中的記錄的安排方式。
First normal form(1NF,第一範式):表中的每個列的交叉處以及記錄包含切進包含一個值的表。
Foreign key(外健):一個表中的一個列或者多個列的集合,這些列匹配某些其他(也可能是同一個)表中的候選鍵。
4GL, Fourth-Generation Language(第四代語言):一種非過程化語言,比如SQL,他只需要用戶定義必須完成什麼操作,4GL負責將所進行的操作翻譯成如何實現這些操作。
Full functional dependency(完全函數依賴):一個列在功能上依賴於復合主健,但不依賴於主健的任何一個子集的條件。
Functional dependency(函數依賴):描述表中列之間的關系。
Generalization(泛化):通過標識實體間的公共特徵使實體間差別最小化的過程。
Generalization hierarchy(泛化層次結構):同類型層次(type hierarchy)。
Global data model(全局數據模型):代表整個公司(和被模型化的公司的一部分)的數據模型。
Implementation(實現):資料庫應用生命周期中的一個階段,包括資料庫和應用程序設計的物理實現。
Index(索引):一種允許DBMS將特定的記錄更快的放置到文件中,從而加快對用戶查詢的響應的數據結構。
Infomation system(信息系統):能夠在整個公司范圍內收集、管理、控制和分發數據/信息的資源。
Inheritance(繼承):參見屬性繼承(attribute inheritance)。
Integrity constaints(完整性約束):防止出現資料庫中的數據不一致的約束。
IS-A hierarchy(IS-A層次結構):同類型層次結構(type hierarchy)。
Local logical data model(局部邏輯數據模型):代表特定用戶視圖或用戶視圖的組合的數據模型。
Logical database design(邏輯資料庫設計):基於特定的數據模型構建公司的數據的模型的過程,但不依賴於特定的DBMS以及其他的物理條件。
Meta-data(元數據):關於數據的數據,參見系統目錄(system catalog)。
Mision objective(使命目標):標識資料庫必須支持的特定任務。
Mission statement(使命語句):定義資料庫應用程序的主要目標。
Multiplicity(多樣性):定義與某個相關實體的一次出現有關的實體的出現數目。
Multi-valued attribute(多值屬性):為一個實體的出現保存多個值的屬性。
Nonkey attribute/column(非鍵屬性/列):不是鍵的一部分的屬性/列。
Normal forms(範式):規范化過程的一個階段。前三個範式分別為第一範式(1NF)、第二範式(2NF)、第三範式(3NF)。
Normalization(規范化):一種產生帶有需要的特性的技術,這種特性能支持用戶和公司的需求。
差不多就是這些了。
⑤ 資料庫 名詞解釋
資料庫的概念:
資料庫(Database)是按照數據結構來組織、存儲和管理數據的倉庫,它產生於距今六十多年前,隨著信息技術和市場的發展,特別是二十世紀九十年代以後,
數據管理不再僅僅是存儲和管理數據,而轉變成用戶所需要的各種數據管理的方式。資料庫有很多種類型,從最簡單的存儲有各種數據的表格到能夠進行海量數據存儲的大型資料庫系統都在各個方面得到了廣泛的應用。
在信息化社會,充分有效地管理和利用各類信息資源,是進行科學研究和決策管理的前提條件。資料庫技術是管理信息系統、辦公自動化系統、決策支持系統等各類信息系統的核心部分,是進行科學研究和決策管理的重要技術手段。
資料庫的定義:
定義1:資料庫(Database)是按照數據結構來組織、存儲和管理數據的建立在計算機存儲設備上的倉庫。
簡單來說是本身可視為電子化的文件櫃——存儲電子文件的處所,用戶可以對文件中的數據進行新增、截取、更新、刪除等操作。
在經濟管理的日常工作中,常常需要把某些相關的數據放進這樣的「倉庫」,並根據管理的需要進行相應的處理。
例如,企業或事業單位的人事部門常常要把本單位職工的基本情況(職工號、姓名、年齡、性別、籍貫、工資、簡歷等)存放在表中,這張表就可以看成是一個資料庫。有了這個"數據倉庫"我們就可以根據需要隨時查詢某職工的基本情況,也可以查詢工資在某個范圍內的職工人數等等。這些工作如果都能在計算機上自動進行,那我們的人事管理就可以達到極高的水平。此外,在財務管理、倉庫管理、生產管理中也需要建立眾多的這種"資料庫",使其可以利用計算機實現財務、倉庫、生產的自動化管理。
定義2:
嚴格來說,資料庫是長期儲存在計算機內、有組織的、可共享的數據集合。資料庫中的數據指的是以一定的數據模型組織、描述和儲存在一起、具有盡可能小的冗餘度、較高的數據獨立性和易擴展性的特點並可在一定范圍內為多個用戶共享。
這種數據集合具有如下特點:盡可能不重復,以最優方式為某個特定組織的多種應用服務,其數據結構獨立於使用它的應用程序,對數據的增、刪、改、查由統一軟體進行管理和控制。從發展的歷史看,資料庫是數據管理的高級階段,它是由文件管理系統發展起來的。[1] [2]
資料庫的處理系統:
資料庫是一個單位或是一個應用領域的通用數據處理系統,它存儲的是屬於企業和事業部門、團體和個人的有關數據的集合。資料庫中的數據是從全局觀點出發建立的,按一定的數據模型進行組織、描述和存儲。其結構基於數據間的自然聯系,從而可提供一切必要的存取路徑,且數據不再針對某一應用,而是面向全組織,具有整體的結構化特徵。
資料庫中的數據是為眾多用戶所共享其信息而建立的,已經擺脫了具體程序的限制和制約。不同的用戶可以按各自的用法使用資料庫中的數據;多個用戶可以同時共享資料庫中的數據資源,即不同的用戶可以同時存取資料庫中的同一個數據。數據共享性不僅滿足了各用戶對信息內容的要求,同時也滿足了各用戶之間信息通信的要求。
資料庫的基本結構:
資料庫的基本結構分三個層次,反映了觀察資料庫的三種不同角度。
以內模式為框架所組成的資料庫叫做物理資料庫;以概念模式為框架所組成的數據叫概念資料庫;以外模式為框架所組成的資料庫叫用戶資料庫。
⑴ 物理數據層。
它是資料庫的最內層,是物理存貯設備上實際存儲的數據的集合。這些數據是原始數據,是用戶加工的對象,由內部模式描述的指令操作處理的位串、字元和字組成。
⑵ 概念數據層。
它是資料庫的中間一層,是資料庫的整體邏輯表示。指出了每個數據的邏輯定義及數據間的邏輯聯系,是存貯記錄的集合。它所涉及的是資料庫所有對象的邏輯關系,而不是它們的物理情況,是資料庫管理員概念下的資料庫。
⑶ 用戶數據層。
它是用戶所看到和使用的資料庫,表示了一個或一些特定用戶使用的數據集合,即邏輯記錄的集合。
資料庫不同層次之間的聯系是通過映射進行轉換的。
資料庫的主要特點:
⑴ 實現數據共享
數據共享包含所有用戶可同時存取資料庫中的數據,也包括用戶可以用各種方式通過介面使用資料庫,並提供數據共享。
⑵ 減少數據的冗餘度
同文件系統相比,由於資料庫實現了數據共享,從而避免了用戶各自建立應用文件。減少了大量重復數據,減少了數據冗餘,維護了數據的一致性。
⑶ 數據的獨立性
數據的獨立性包括邏輯獨立性(資料庫中資料庫的邏輯結構和應用程序相互獨立)和物理獨立性(數據物理結構的變化不影響數據的邏輯結構)。
⑷ 數據實現集中控制
文件管理方式中,數據處於一種分散的狀態,不同的用戶或同一用戶在不同處理中其文件之間毫無關系。利用資料庫可對數據進行集中控制和管理,並通過數據模型表示各種數據的組織以及數據間的聯系。
⑸數據一致性和可維護性,以確保數據的安全性和可靠性
主要包括:①安全性控制:以防止數據丟失、錯誤更新和越權使用;②完整性控制:保證數據的正確性、有效性和相容性;③並發控制:使在同一時間周期內,允許對數據實現多路存取,又能防止用戶之間的不正常交互作用。
⑹ 故障恢復
由資料庫管理系統提供一套方法,可及時發現故障和修復故障,從而防止數據被破壞。資料庫系統能盡快恢復資料庫系統運行時出現的故障,可能是物理上或是邏輯上的錯誤。比如對系統的誤操作造成的數據錯誤等。
資料庫的數據種類:
資料庫通常分為層次式資料庫、網路式資料庫和關系式資料庫三種。而不同的資料庫是按不同的數據結構來聯系和組織的。
1.數據結構模型
⑴數據結構
所謂數據結構是指數據的組織形式或數據之間的聯系。
如果用D表示數據,用R表示數據對象之間存在的關系集合,則將DS=(D,R)稱為數據結構。
例如,設有一個電話號碼簿,它記錄了n個人的名字和相應的電話號碼。為了方便地查找某人的電話號碼,將人名和號碼按字典順序排列,並在名字的後面跟隨著對應的電話號碼。這樣,若要查找某人的電話號碼(假定他的名字的第一個字母是Y),那麼只須查找以Y開頭的那些名字就可以了。該例中,數據的集合D就是人名和電話號碼,它們之間的聯系R就是按字典順序的排列,其相應的數據結構就是DS=(D,R),即一個數組。
⑵數據結構類型
數據結構又分為數據的邏輯結構和數據的物理結構。
數據的邏輯結構是從邏輯的角度(即數據間的聯系和組織方式)來觀察數據,分析數據,與數據的存儲位置無關;數據的物理結構是指數據在計算機中存放的結構,即數據的邏輯結構在計算機中的實現形式,所以物理結構也被稱為存儲結構。
這里只研究數據的邏輯結構,並將反映和實現數據聯系的方法稱為數據模型。
比較流行的數據模型有三種,即按圖論理論建立的層次結構模型和網狀結構模型以及按關系理論建立的關系結構模型。
2.層次、網狀和關系資料庫系統
⑴層次結構模型
層次結構模型實質上是一種有根結點的定向有序樹(在數學中"樹"被定義為一個無回的連通圖)。下圖是一個高等學校的組織結構圖。這個組織結構圖像一棵樹,校部就是樹根(稱為根結點),各系、專業、教師、學生等為枝點(稱為結點),樹根與枝點之間的聯系稱為邊,樹根與邊之比為1:N,即樹根只有一個,樹枝有N個。
按照層次模型建立的資料庫系統稱為層次模型資料庫系統。IMS(Information Management System)是其典型代表。
⑵網狀結構模型
按照網狀數據結構建立的資料庫系統稱為網狀資料庫系統,其典型代表是DBTG(Database Task Group)。用數學方法可將網狀數據結構轉化為層次數據結構。
⑶ 關系結構模型
關系式數據結構把一些復雜的數據結構歸結為簡單的二元關系(即二維表格形式)。例如某單位的職工關系就是一個二元關系。
由關系數據結構組成的資料庫系統被稱為關系資料庫系統。
在關系資料庫中,對數據的操作幾乎全部建立在一個或多個關系表格上,通過對這些關系表格的分類、合並、連接或選取等運算來實現數據的管理。
dBASEⅡ就是這類資料庫管理系統的典型代表。對於一個實際的應用問題(如人事管理問題),有時需要多個關系才能實現。用dBASEⅡ建立起來的一個關系稱為一個資料庫(或稱資料庫文件),而把對應多個關系建立起來的多個資料庫稱為資料庫系統。dBASEⅡ的另一個重要功能是通過建立命令文件來實現對資料庫的使用和管理,對於一個資料庫系統相應的命令序列文件,稱為該資料庫的應用系統。
因此,可以概括地說,一個關系稱為一個資料庫,若干個資料庫可以構成一個資料庫系統。資料庫系統可以派生出各種不同類型的輔助文件和建立它的應用系統。
資料庫的發展簡史:
1 資料庫的技術發展
使用計算機後,隨著數據處理量的增長,產生了數據管理技術。數據管理技術的發展與計算機硬體(主要是外部存儲器)系統軟體及計算機應用的范圍有著密切的聯系。數據管理技術的發展經歷了以下四個階段:人工管理階段、文件系統階段、資料庫階段和高級資料庫技術階段 。
2 數據管理的誕生
資料庫的歷史可以追溯到五十年前,那時的數據管理非常簡單。通過大量的分類、比較和表格繪制的機器運行數百萬穿孔卡片來進行數據的處理,其運行結果在紙上列印出來或者製成新的穿孔卡片。而數據管理就是對所有這些穿孔卡片進行物理的儲存和處理。然而,1950 年雷明頓蘭德公司(Remington Rand Inc)的一種叫做Univac I 的計算機推出了一種一秒鍾可以輸入數百條記錄的磁帶驅動器,從而引發了數據管理的革命。1956 年IBM生產出第一個磁碟驅動器—— the Model 305 RAMAC。此驅動器有50 個碟片,每個碟片直徑是2 英尺,可以儲存5MB的數據。使用磁碟最大的好處是可以隨機存取數據,而穿孔卡片和磁帶只能順序存取數據。
1951: Univac系統使用磁帶和穿孔卡片作為數據存儲。
資料庫系統的萌芽出現於二十世紀60 年代。當時計算機開始廣泛地應用於數據管理,對數據的共享提出了越來越高的要求。傳統的文件系統已經不能滿足人們的需要,能夠統一管理和共享數據的資料庫管理系統(DBMS)應運而生。數據模型是資料庫系統的核心和基礎,各種DBMS軟體都是基於某種數據模型的。所以通常也按照數據模型的特點將傳統資料庫系統分成網狀資料庫、層次資料庫和關系資料庫三類。
最早出現的網狀DBMS,是美國通用電氣公司Bachman等人在1961年開發的IDS(Integrated Data Store)。1964年通用電氣公司(General ElectricCo.)的Charles Bachman 成功地開發出世界上第一個網狀DBMS也即第一個資料庫管理系統——集成數據存儲(Integrated Data Store IDS),奠定了網狀資料庫的基礎,並在當時得到了廣泛的發行和應用。IDS 具有數據模式和日誌的特徵,但它只能在GE主機上運行,並且資料庫只有一個文件,資料庫所有的表必須通過手工編碼生成。之後,通用電氣公司一個客戶——BF Goodrich Chemical 公司最終不得不重寫了整個系統,並將重寫後的系統命名為集成數據管理系統(IDMS)。
網狀資料庫模型對於層次和非層次結構的事物都能比較自然的模擬,在關系資料庫出現之前網狀DBMS要比層次DBMS用得普遍。在資料庫發展史上,網狀資料庫佔有重要地位。
層次型DBMS是緊隨網路型資料庫而出現的,最著名最典型的層次資料庫系統是IBM 公司在1968 年開發的IMS(Information Management System),一種適合其主機的層次資料庫。這是IBM公司研製的最早的大型資料庫系統程序產品。從60年代末產生起,如今已經發展到IMSV6,提供群集、N路數據共享、消息隊列共享等先進特性的支持。這個具有30年歷史的資料庫產品在如今的WWW應用連接、商務智能應用中扮演著新的角色。
1973年Cullinane公司(也就是後來的Cullinet軟體公司),開始出售Goodrich公司的IDMS改進版本,並且逐漸成為當時世界上最大的軟體公司。
資料庫的關系由來:
網狀資料庫和層次資料庫已經很好地解決了數據的集中和共享問題,但是在數據獨立性和抽象級別上仍有很大欠缺。用戶在對這兩種資料庫進行存取時,仍然需要明確數據的存儲結構,指出存取路徑。而後來出現的關系資料庫較好地解決了這些問題。
1970年,IBM的研究員E.F.Codd博士在刊物《Communication of the ACM》上發表了一篇名為「A Relational Model of Data for Large Shared Data Banks」的論文,提出了關系模型的概念,奠定了關系模型的理論基礎。盡管之前在1968年Childs已經提出了面向集合的模型,然而這篇論文被普遍認為是資料庫系統歷史上具有劃時代意義的里程碑。Codd的心願是為資料庫建立一個優美的數據模型。後來Codd又陸續發表多篇文章,論述了範式理論和衡量關系系統的12條標准,用數學理論奠定了關系資料庫的基礎。關系模型有嚴格的數學基礎,抽象級別比較高,而且簡單清晰,便於理解和使用。但是當時也有人認為關系模型是理想化的數據模型,用來實現DBMS是不現實的,尤其擔心關系資料庫的性能難以接受,更有人視其為當時正在進行中的網狀資料庫規范化工作的嚴重威脅。為了促進對問題的理解,1974年ACM牽頭組織了一次研討會,會上開展了一場分別以Codd和Bachman為首的支持和反對關系資料庫兩派之間的辯論。這次著名的辯論推動了關系資料庫的發展,使其最終成為現代資料庫產品的主流。
1969年Edgar F.「Ted」 Codd發明了關系資料庫。
1970年關系模型建立之後,IBM公司在San Jose實驗室增加了更多的研究人員研究這個項目,這個項目就是著名的System R。其目標是論證一個全功能關系DBMS的可行性。該項目結束於1979年,完成了第一個實現SQL的 DBMS。然而IBM對IMS的承諾阻止了System R的投產,一直到1980年System R才作為一個產品正式推向市場。IBM產品化步伐緩慢的三個原因:IBM重視信譽,重視質量,盡量減少故障;IBM是個大公司,官僚體系龐大,IBM內部已經有層次資料庫產品,相關人員不積極,甚至反對。
然而同時,1973年加州大學伯克利分校的Michael Stonebraker和Eugene Wong利用System R已發布的信息開始開發自己的關系資料庫系統Ingres。他們開發的Ingres項目最後由Oracle公司、Ingres公司以及矽谷的其他廠商所商品化。後來,System R和Ingres系統雙雙獲得ACM的1988年「軟體系統獎」。
1976年霍尼韋爾公司(Honeywell)開發了第一個商用關系資料庫系統——Multics Relational Data Store。關系型資料庫系統以關系代數為堅實的理論基礎,經過幾十年的發展和實際應用,技術越來越成熟和完善。其代表產品有Oracle、IBM公司的 DB2、微軟公司的MS SQL Server以及Informix、ADABAS D等等。
資料庫的發展階段:
資料庫發展階段大致劃分為如下的幾個階段:人工管理階段、文件系統階段、資料庫系統階段、高級資料庫階段。
人工管理階段
20世紀50年代中期之前,計算機的軟硬體均不完善。硬體存儲設備只有磁帶、卡片和紙帶,軟體方面還沒有操作系統,當時的計算機主要用於科學計算。這個階段由於還沒有軟體系統對數據進行管理,程序員在程序中不僅要規定數據的邏輯結構,還要設計其物理結構,包括存儲結構、存取方法、輸入輸出方式等。當數據的物理組織或存儲設備改變時,用戶程序就必須重新編制。由於數據的組織面向應用,不同的計算程序之間不能共享數據,使得不同的應用之間存在大量的重復數據,很難維護應用程序之間數據的一致性。
這一階段的主要特徵可歸納為如下幾點:
(1)計算機中沒有支持數據管理的軟體,計算機系統不提供對用戶數據的管理功能,應用程序只包含自己要用到的全部數據。用戶編製程序,必須全面考慮好相關的數據,包括數據的定義、存儲結構以即存取方法等。程序和數據是一個不可分割的整體。數據脫離了程序極具無任何存在的價值,數據無獨立性。
(2)數據不能共享。不同的程序均有各自的數據,這些數據對不同的程序通常是不相同的,不可共享;即使不同的程序使用了相同的一組數據,這些數據也不能共享,程序中仍然需要各自加入這組數據,哪個部分都不能省略。基於這種數據的不可共享性,必然導致程序與程序之間存在大量的重復數據,浪費存儲空間。
(3)不能單獨保存數據。在程序中要規定數據的邏輯結構和物理結構,數據與程序不獨立。基於數據與程序是一個整體,數據只為本程序所使用,數據只有與相應的程序一起保存才有價值,否則毫無用處。所以,所有程序的數據不單獨保存。數據處理的方式是批處理。
文件系統階段:
這一階段的主要標志是計算機中有了專門管理資料庫的軟體——操作系統(文件管理)。
上世紀50年代中期到60年代中期,由於計算機大容量直接存儲設備如硬碟、磁鼓的出現,
推動了軟體技術的發展,軟體的領域出現了操作系統和高級軟體,操作系統中的文件系統是專門管理外存的數據管理軟體,操作系統為用戶使用文件提供了友好界面。操作系統的出現標志著數據管理步入一個新的階段。在文件系統階段,數據以文件為單位存儲在外存,且由操作系統統一管理,文件是操作系統管理的重要資源。
文件系統階段的數據管理具有一下幾個特點:
優點
(1)數據以「文件」形式可長期保存在外部存儲器的磁碟上。由於計算機的應用轉向信息管理,因此對文件要進行大量的查詢、修改和插入等操作。
(2)數據的邏輯結構與物理結構有了區別,程序和數據分離,使數據與程序有了一定的獨立性,但比較簡單。數據的邏輯結構是指呈現在用戶面前的數據結構形式。數據的物理結構是指數據在計算機存儲設備上的實際存儲結構。程度與數據之間具有「設備獨立性」,即程序只需用文件名就可與數據打交道,不必關心數據的物理位置。由操作系統的文件系統提供存取方法(讀/寫)。
(3)文件組織已多樣化。有索引文件、鏈接文件和直接存取文件等。但文件之間相互獨立、缺乏聯系。數據之間的聯系需要通過程序去構造。
(4)數據不再屬於某個特定的程序,可以重復使用,即數據面向應用。但是文件結構的設計仍是基於特定的用途,程序基於特定的物理結構和存取方法,因此程度與數據結構之間的依賴關系並未根本改變。
(5)用戶的程序與數據可分別存放在外存儲器上,各個應用程序可以共享一組數據,實現了以文件為單位的數據共享文件系統。
(6)對數據的操作以記錄為單位。這是由於文件中只存儲數據,不存儲文件記錄的結構描述信息。文件的建立、存取、查詢、插入、刪除、修改等操作,都要用程序來實現。
(7)數據處理方式有批處理,也有聯機實時處理。
缺點
文件系統對計算機數據管理能力的提高雖然起了很大的作用,但隨著數據管理規模的擴大,數據量急劇增加,文價系統顯露出一些缺陷,問題表現在:
(1)數據文件是為了滿足特定業務領域某一部門的專門需要而設計,數據和程序相互依賴,數據缺乏足夠的獨立性。
(2)數據沒有集中管理的機制,其安全性和完整性無法保障,數據維護業務仍然由應用程序來承擔;
(3)數據的組織仍然是面向程序,數據與程序的依賴性強,數據的邏輯結構不能方便地修改和擴充,數據邏輯結構的每一點微小改變都會影響到應用程序;而且文件之間的缺乏聯系,因而它們不能反映現實世界中事物之間的聯系,加上操作系統不負責維護文件之間的聯系,信息造成每個應用程序都有相對應的文件。如果文件之間有內容上的聯系,那也只能由應用程序去處理,有可能同樣的數據在多個文件中重復儲存。這兩者造成了大量的數據冗餘。
(4)對現有數據文件不易擴充,不易移植,難以通過增、刪數據項來適應新的應用要求。
資料庫系統階段:
20世紀60年代後期,隨著計算機在數據管理領域的普遍應用,人們對數據管理技術提出了更高的要求:希望面向企業或部門,以數據為中心組織數據,減少數據的冗餘,提供更高的數據共享能力,同時要求程序和數據具有較高的獨立性,當數據的邏輯結構改變時,不涉及數據的物理結構,也不影響應用程序,以降低應用程序研製與維護的費用。資料庫技術正是在這樣一個應用需求的基礎上發展起來的。
概括起來,資料庫系統階段的數據管理具有以下幾個特點:
(1)採用數據模型表示復雜的數據結構。數據模型不僅描述數據本身的特徵,還要描述數據之間的聯系,這種聯系通過所有存取路徑。通過所有存儲路徑表示自然的數據聯系是資料庫與傳統文件的根本區別。這樣,數據不再面向特定的某個或多個應用,而是面對整個應用系統。如面向企業或部門,以數據為中心組織數據,形成綜合性的資料庫,為各應用共享。
(2)由於面對整個應用系統使得,數據冗餘小,易修改、易擴充,實現了數據貢獻。不同的應用程序根據處理要求,從資料庫中獲取需要的數據,這樣就減少了數據的重復存儲,也便於增加新的數據結構,便於維護數據的一致性。
(3)對數據進行統一管理和控制,提供了數據的安全性、完整性、以及並發控制。
(4)程序和數據有較高的獨立性。數據的邏輯結構與物理結構之間的差別可以很大,用戶以簡單的邏輯結構操作數據而無須考慮數據的物理結構。
(5)具有良好的用戶介面,用戶可方便地開發和使用資料庫。
從文件系統發展到資料庫系統,這在信息領域中具有里程碑的意義。在文件系統階段,人們在信息處理中關注的中心問題是系統功能的設計,因此程序設計佔主導地位;而在資料庫方式下,數據開始占據了中心位置,數據的結構設計成為信息系統首先關心的問題,而應用程序則以既定的數據結構為基礎進行設計。
資料庫發展趨勢:
隨著信息管理內容的不斷擴展,出現了豐富多樣的數據模型(層次模型,網狀模型,關系模型,面向對象模型,半結構化模型等),新技術也層出不窮(數據流,Web數據管理,數據挖掘等)。每隔幾年,國際上一些資深的資料庫專家就會聚集一堂,探討資料庫研究現狀,存在的問題和未來需要關注的新技術焦點。過去已有的幾個類似報告包括:1989年Future Directions inDBMS Research-The Laguna BeachParticipants ;1990年DatabaseSystems : Achievements and Opportunities ;1991年W.H. Inmon 發表的《構建數據倉庫》;1995年Database。
常見資料庫廠商:
1. SQL Server
只能在windows上運行,沒有絲毫的開放性,操作系統的系統的穩定對資料庫是十分重要的。Windows9X系列產品是偏重於桌面應用,NT server只適合中小型企業。而且windows平台的可靠性,安全性和伸縮性是非常有限的。它不象unix那樣久經考驗,尤其是在處理大資料庫。
2. Oracle
能在所有主流平台上運行(包括 windows)。完全支持所有的工業標准。採用完全開放策略。可以使客戶選擇最適合的解決方案。對開發商全力支持。
3. Sybase ASE
能在所有主流平台上運行(包括 windows)。 但由於早期Sybase與OS集成度不高,因此VERSION11.9.2以下版本需要較多OS和DB級補丁。在多平台的混合環境中,會有一定問題。
4. DB2
能在所有主流平台上運行(包括windows)。最適於海量數據。DB2在企業級的應用最為廣泛,在全球的500家最大的企業中,幾乎85%以上用DB2資料庫伺服器,而國內到97年約佔5%。
⑥ 資料庫分為哪幾類
一、資料庫通常分為層次式資料庫、網路式資料庫和關系式資料庫三種。而不同的資料庫是按不同的數據結構來聯系和組織的。
二、所謂數據結構是指數據的組織形式或數據之間的聯系。
三、數據結構又分為數據的邏輯結構和數據的物理結構。
數據的邏輯結構是從邏輯的角度(即數據間的聯系和組織方式)來觀察數據,分析數據,與數據的存儲位置無關;
數據的物理結構是指數據在計算機中存放的結構,即數據的邏輯結構在計算機中的實現形式,所以物理結構也被稱為存儲結構。
四、層次結構模型實質上是一種有根結點的定向有序樹(在數學中"樹"被定義為一個無回的連通圖)。
⑦ 如何查詢資料庫或者表中的索引
oracle對於資料庫中的表信息,存儲在系統表中。查詢已創建好的表索引,可通過相應的sql語句到相應的表中進行快捷的查詢:
1.
根據表名,查詢一張表的索引
select
*
from
user_indexes
where
table_name=upper('表名');
2.
根據索引號,查詢表索引欄位
select
*
from
user_ind_columns
where
index_name=('索引名');
3.根據索引名,查詢創建索引的語句
select
dbms_metadata.get_ddl('index','索引名',
['用戶名'])
from
al
;
--['用戶名']可省,默認為登錄用戶
ps:dbms_metadata.get_ddl還可以得到建表語句,如:
select
dbms_metadata.get_ddl('table','表名',
['用戶名'])
from
al
;
//取單個表的建表語句,['用戶名']可不輸入,默認為登錄用戶
select
dbms_metadata.get_ddl('table',u.table_name)
from
user_tables
u;
//取用戶下所有表的建表語句
當然,也可以用pl/sql
developer工具來查看相關的表的各種信息。
⑧ 資料庫中or和and的區別
or是或關系,就是兩邊有一個是真就行
and是與關系,兩邊有必須全部為真
⑨ 資料庫<>是什麼意思
資料庫中<>的含義:
<>為不等號,常見的其它寫法有: !=
資料庫功能:
資料庫(Database)是按照數據結構來組織、存儲和管理數據的倉庫,它產生於距今六十多年前,隨著信息技術和市場的發展,特別是二十世紀九十年代以後,數據管理不再僅僅是存儲和管理數據,而轉變成用戶所需要的各種數據管理的方式。資料庫有很多種類型,從最簡單的存儲有各種數據的表格到能夠進行海量數據存儲的大型資料庫系統都在各個方面得到了廣泛的應用。
在信息化社會,充分有效地管理和利用各類信息資源,是進行科學研究和決策管理的前提條件。資料庫技術是管理信息系統、辦公自動化系統、決策支持系統等各類信息系統的核心部分,是進行科學研究和決策管理的重要技術手段。
資料庫定義1:
資料庫(Database)是按照數據結構來組織、存儲和管理數據的建立在計算機存儲設備上的倉庫。
簡單來說是本身可視為電子化的文件櫃——存儲電子文件的處所,用戶可以對文件中的數據進行新增、截取、更新、刪除等操作。
在經濟管理的日常工作中,常常需要把某些相關的數據放進這樣的「倉庫」,並根據管理的需要進行相應的處理。
例如,企業或事業單位的人事部門常常要把本單位職工的基本情況(職工號、姓名、年齡、性別、籍貫、工資、簡歷等)存放在表中,這張表就可以看成是一個資料庫。有了這個"數據倉庫"我們就可以根據需要隨時查詢某職工的基本情況,也可以查詢工資在某個范圍內的職工人數等等。這些工作如果都能在計算機上自動進行,那我們的人事管理就可以達到極高的水平。此外,在財務管理、倉庫管理、生產管理中也需要建立眾多的這種"資料庫",使其可以利用計算機實現財務、倉庫、生產的自動化管理。
資料庫定義2:
嚴格來說,資料庫是長期儲存在計算機內、有組織的、可共享的數據集合。資料庫中的數據指的是以一定的數據模型組織、描述和儲存在一起、具有盡可能小的冗餘度、較高的數據獨立性和易擴展性的特點並可在一定范圍內為多個用戶共享。
這種數據集合具有如下特點:盡可能不重復,以最優方式為某個特定組織的多種應用服務,其數據結構獨立於使用它的應用程序,對數據的增、刪、改、查由統一軟體進行管理和控制。從發展的歷史看,資料庫是數據管理的高級階段,它是由文件管理系統發展起來的。
資料庫處理系統:
資料庫是一個單位或是一個應用領域的通用數據處理系統,它存儲的是屬於企業和事業部門、團體和個人的有關數據的集合。資料庫中的數據是從全局觀點出發建立的,按一定的數據模型進行組織、描述和存儲。其結構基於數據間的自然聯系,從而可提供一切必要的存取路徑,且數據不再針對某一應用,而是面向全組織,具有整體的結構化特徵。
資料庫中的數據是為眾多用戶所共享其信息而建立的,已經擺脫了具體程序的限制和制約。不同的用戶可以按各自的用法使用資料庫中的數據;多個用戶可以同時共享資料庫中的數據資源,即不同的用戶可以同時存取資料庫中的同一個數據。數據共享性不僅滿足了各用戶對信息內容的要求,同時也滿足了各用戶之間信息通信的要求。
資料庫基本結構:
資料庫的基本結構分三個層次,反映了觀察資料庫的三種不同角度。
以內模式為框架所組成的資料庫叫做物理資料庫;以概念模式為框架所組成的數據叫概念資料庫;以外模式為框架所組成的資料庫叫用戶資料庫。
⑴ 物理數據層。
它是資料庫的最內層,是物理存貯設備上實際存儲的數據的集合。這些數據是原始數據,是用戶加工的對象,由內部模式描述的指令操作處理的位串、字元和字組成。
⑵ 概念數據層。
它是資料庫的中間一層,是資料庫的整體邏輯表示。指出了每個數據的邏輯定義及數據間的邏輯聯系,是存貯記錄的集合。它所涉及的是資料庫所有對象的邏輯關系,而不是它們的物理情況,是資料庫管理員概念下的資料庫。
⑶ 用戶數據層。
它是用戶所看到和使用的資料庫,表示了一個或一些特定用戶使用的數據集合,即邏輯記錄的集合。
資料庫不同層次之間的聯系是通過映射進行轉換的。
資料庫主要特點:
⑴ 實現數據共享
數據共享包含所有用戶可同時存取資料庫中的數據,也包括用戶可以用各種方式通過介面使用資料庫,並提供數據共享。
⑵ 減少數據的冗餘度
同文件系統相比,由於資料庫實現了數據共享,從而避免了用戶各自建立應用文件。減少了大量重復數據,減少了數據冗餘,維護了數據的一致性。
⑶ 數據的獨立性
數據的獨立性包括邏輯獨立性(資料庫中資料庫的邏輯結構和應用程序相互獨立)和物理獨立性(數據物理結構的變化不影響數據的邏輯結構)。
⑷ 數據實現集中控制
文件管理方式中,數據處於一種分散的狀態,不同的用戶或同一用戶在不同處理中其文件之間毫無關系。利用資料庫可對數據進行集中控制和管理,並通過數據模型表示各種數據的組織以及數據間的聯系。
⑸數據一致性和可維護性,以確保數據的安全性和可靠性
主要包括:①安全性控制:以防止數據丟失、錯誤更新和越權使用;②完整性控制:保證數據的正確性、有效性和相容性;③並發控制:使在同一時間周期內,允許對數據實現多路存取,又能防止用戶之間的不正常交互作用。
⑹ 故障恢復
由資料庫管理系統提供一套方法,可及時發現故障和修復故障,從而防止數據被破壞。資料庫系統能盡快恢復資料庫系統運行時出現的故障,可能是物理上或是邏輯上的錯誤。比如對系統的誤操作造成的數據錯誤等。
資料庫數據種類:
資料庫通常分為層次式資料庫、網路式資料庫和關系式資料庫三種。而不同的資料庫是按不同的數據結構來聯系和組織的。
1.數據結構模型
⑴數據結構
所謂數據結構是指數據的組織形式或數據之間的聯系。
如果用D表示數據,用R表示數據對象之間存在的關系集合,則將DS=(D,R)稱為數據結構。
例如,設有一個電話號碼簿,它記錄了n個人的名字和相應的電話號碼。為了方便地查找某人的電話號碼,將人名和號碼按字典順序排列,並在名字的後面跟隨著對應的電話號碼。這樣,若要查找某人的電話號碼(假定他的名字的第一個字母是Y),那麼只須查找以Y開頭的那些名字就可以了。該例中,數據的集合D就是人名和電話號碼,它們之間的聯系R就是按字典順序的排列,其相應的數據結構就是DS=(D,R),即一個數組。
⑵數據結構類型
數據結構又分為數據的邏輯結構和數據的物理結構。
數據的邏輯結構是從邏輯的角度(即數據間的聯系和組織方式)來觀察數據,分析數據,與數據的存儲位置無關;數據的物理結構是指數據在計算機中存放的結構,即數據的邏輯結構在計算機中的實現形式,所以物理結構也被稱為存儲結構。這里只研究數據的邏輯結構,並將反映和實現數據聯系的方法稱為數據模型。
比較流行的數據模型有三種,即按圖論理論建立的層次結構模型和網狀結構模型以及按關系理論建立的關系結構模型。
2.層次、網狀和關系資料庫系統
⑴層次結構模型
層次結構模型實質上是一種有根結點的定向有序樹(在數學中"樹"被定義為一個無回的連通圖)。下圖是一個高等學校的組織結構圖。這個組織結構圖像一棵樹,校部就是樹根(稱為根結點),各系、專業、教師、學生等為枝點(稱為結點),樹根與枝點之間的聯系稱為邊,樹根與邊之比為1:N,即樹根只有一個,樹枝有N個。按照層次模型建立的資料庫系統稱為層次模型資料庫系統。IMS(Information Management System)是其典型代表。
⑵網狀結構模型
按照網狀數據結構建立的資料庫系統稱為網狀資料庫系統,其典型代表是DBTG(Database Task Group)。用數學方法可將網狀數據結構轉化為層次數據結構。
⑶ 關系結構模型
關系式數據結構把一些復雜的數據結構歸結為簡單的二元關系(即二維表格形式)。例如某單位的職工關系就是一個二元關系。
由關系數據結構組成的資料庫系統被稱為關系資料庫系統。
在關系資料庫中,對數據的操作幾乎全部建立在一個或多個關系表格上,通過對這些關系表格的分類、合並、連接或選取等運算來實現數據的管理。
dBASEⅡ就是這類資料庫管理系統的典型代表。對於一個實際的應用問題(如人事管理問題),有時需要多個關系才能實現。用dBASEⅡ建立起來的一個關系稱為一個資料庫(或稱資料庫文件),而把對應多個關系建立起來的多個資料庫稱為資料庫系統。dBASEⅡ的另一個重要功能是通過建立命令文件來實現對資料庫的使用和管理,對於一個資料庫系統相應的命令序列文件,稱為該資料庫的應用系統。
因此,可以概括地說,一個關系稱為一個資料庫,若干個資料庫可以構成一個資料庫系統。資料庫系統可以派生出各種不同類型的輔助文件和建立它的應用系統。
資料庫類型:
網狀資料庫(Network Database)、關系資料庫(Relational Database)、樹狀資料庫(Hierarchical Database)、面向對象資料庫(Object-oriented Database)等。商業應用中主要是關系資料庫,比如Oracle、DB2、Sybase、MS SQL Server、Informax、MySQL等。
⑩ 如何向資料庫中添加數據或日誌文件
開始之前
限制和局限
當 BACKUP 語句正在運行時,不能添加或刪除文件。
可以為每個資料庫指定最多 32,767 個文件和 32,767 個文件組。
安全性
許可權
需要對資料庫擁有 ALTER 許可權。
使用 SQL Server Management Studio
向資料庫添加數據文件或日誌文件
在 「對象資源管理器」中,連接到 SQL Server 資料庫引擎 的實例,然後展開該實例。
展開「資料庫」,右鍵單擊要從中添加文件的資料庫,然後單擊「屬性」。
在 「資料庫屬性」 對話框中,選擇 「文件」 頁。
若要添加數據或事務日誌文件,請單擊 「添加」。
在 「資料庫文件」 網格中,輸入文件的邏輯名稱。 該文件名在資料庫中必須唯一。
選擇文件類型:數據或日誌。
對於數據文件,從列表中選擇應包含該文件的文件組,或選擇「<新建文件組>」來創建新的文件組。 事務日誌不能放在文件組中。
指定文件的初始大小。 根據資料庫中您希望的最大數據量,使數據文件盡可能大。
若要指定文件的增長方式,請在「自動增長」列中單擊 (…)。 從下列選項中進行選擇:
若要允許當前選中的文件根據數據空間量的需求增加而增長,請選中 「啟用自動增長」 復選框,然後從下列選項中進行選擇:
若要指定文件按固定增量增長,請選擇 「按 MB」 並指定一個值。
若要指定文件按當前文件大小的百分比增長,請選擇 「按百分比」 並指定一個值。
若要指定最大文件大小限制,請從下列選項中進行選擇:
若要指定文件能夠增長到的最大大小,請選擇「限制文件增長(MB)」並指定一個值。
若要允許文件根據需要增長,請選擇 「不限制文件增長」。
若要防止文件增長,請清除 「啟用自動增長」 復選框。 文件大小不會增長到超過「初始大小(MB)」列中指定的值。