birch聚類演算法
『壹』 詳解數據挖掘BIRCH演算法
BIRCH採用了一種多階段聚類技術:數據集合的單遍掃描產生一個基本的好簇,一或多遍的額外掃描可以用來進一步(優化)改進聚類質量。它主要包括兩個階段:
階段一:BIRCH掃描資料庫,建立一棵存放於內存的初始CF樹,它可以看作數據的多層壓縮,試圖保留數據的內在聚類結構。
階段二:BIRCH採用某個(選定的)聚類演算法對CF樹的葉節點進行聚類,把稀疏的簇當作離群點刪除而把稠密的簇合並為更大的簇。
『貳』 birch演算法是什麼類型的聚類演算法
簡單地說,分類(Categorization or Classification)就是按照某種標准給對象貼標簽(label),再根據標簽來區分歸類。
簡單地說,聚類是指事先沒有「標簽」而通過某種成團分析找出事物之間存在聚集性原因的過程。
區別是,分類是事先定義好類別 ,類別數不變 。分類器需要由人工標注的分類訓練語料訓練得到,屬於有指導學習范疇。聚類則沒有事先預定的類別,類別數不確定。 聚類不需要人工標注和預先訓練分類器,類別在聚類過程中自動生成 。分類適合類別或分類體系已經確定的場合,比如按照國圖分類法分類圖書;聚類則適合不存在分類體系、類別數不確定的場合,一般作為某些應用的前端,比如多文檔文摘、搜索引擎結果後聚類(元搜索)等。
分類的目的是學會一個分類函數或分類模型(也常常稱作分類器 ),該模型能把資料庫中的數據項映射到給定類別中的某一個類中。 要構造分類器,需要有一個訓練樣本數據集作為輸入。訓練集由一組資料庫記錄或元組構成,每個元組是一個由有關欄位(又稱屬性或特徵)值組成的特徵向量,此外,訓練樣本還有一個類別標記。一個具體樣本的形式可表示為:(v1,v2,...,vn; c);其中vi表示欄位值,c表示類別。分類器的構造方法有統計方法、機器學習方法、神經網路方法等等。
『叄』 有哪些常用的聚類演算法
聚類分析計算方法主要有如下幾種:
1. 劃分法(partitioning methods)
給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。而且這K個分組滿足下列條件:(1) 每一個分組至少包含一個數據紀錄;(2)每一個數據紀錄屬於且僅屬於一個分組(注意:這個要求在某些模糊聚類演算法中可以放寬);對於給定的K,演算法首先給出一個初始的分組方法,以後通過反復迭代的方法改變分組,使得每一次改進之後的分組方案都較前一次好,而所謂好的標准就是:同一分組中的記錄越近越好,而不同分組中的紀錄越遠越好。使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法;
2. 層次法(hierarchical methods)
這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。例如在「自底向上」方案中,初始時每一個數據紀錄都組成一個單獨的組,在接下來的迭代中,它把那些相互鄰近的組合並成一個組,直到所有的記錄組成一個分組或者某個條件滿足為止。代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等;
3. 基於密度的方法(density-based methods)
基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。這個方法的指導思想就是,只要一個區域中的點的密度大過某個閥值,就把它加到與之相近的聚類中去。代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等;
4. 基於網格的方法(grid-based methods)
這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。這么處理的一個突出的優點就是處理速度很快,通常這是與目標資料庫中記錄的個數無關的,它只與把數據空間分為多少個單元有關。代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法;
5. 基於模型的方法(model-based methods)
基於模型的方法給每一個聚類假定一個模型,然後去尋找能個很好的滿足這個模型的數據集。這樣一個模型可能是數據點在空間中的密度分布函數或者其它。它的一個潛在的假定就是:目標數據集是由一系列的概率分布所決定的。通常有兩種嘗試方向:統計的方案和神經網路的方案。
『肆』 智能演算法有哪些
(1)人工神經網路(Artificial Neural Network)類:反向傳播(Backpropagation)、波爾茲曼機(Boltzmann Machine)、卷積神經網路(Convolutional Neural Network)、Hopfield網路(hopfield Network)、多層感知器(Multilyer Perceptron)、徑向基函數網路(Radial Basis Function Network,RBFN)、受限波爾茲曼機(Restricted Boltzmann Machine)、回歸神經網路(Recurrent Neural Network,RNN)、自組織映射(Self-organizing Map,SOM)、尖峰神經網路(Spiking Neural Network)等。
(2)貝葉斯類(Bayesin):樸素貝葉斯(Naive Bayes)、高斯貝葉斯(Gaussian Naive Bayes)、多項樸素貝葉斯(Multinomial Naive Bayes)、平均-依賴性評估(Averaged One-Dependence Estimators,AODE)
貝葉斯信念網路(Bayesian Belief Network,BBN)、貝葉斯網路(Bayesian Network,BN)等。
(3)決策樹(Decision Tree)類:分類和回歸樹(Classification and Regression Tree,CART)、迭代Dichotomiser3(Iterative Dichotomiser 3, ID3),C4.5演算法(C4.5 Algorithm)、C5.0演算法(C5.0 Algorithm)、卡方自動交互檢測(Chi-squared Automatic Interaction Detection,CHAID)、決策殘端(Decision Stump)、ID3演算法(ID3 Algorithm)、隨機森林(Random Forest)、SLIQ(Supervised Learning in Quest)等。
(4)線性分類器(Linear Classifier)類:Fisher的線性判別(Fisher』s Linear Discriminant)
線性回歸(Linear Regression)、邏輯回歸(Logistic Regression)、多項邏輯回歸(Multionmial Logistic Regression)、樸素貝葉斯分類器(Naive Bayes Classifier)、感知(Perception)、支持向量機(Support Vector Machine)等。
常見的無監督學習類演算法包括:
(1) 人工神經網路(Artificial Neural Network)類:生成對抗網路(Generative Adversarial Networks,GAN),前饋神經網路(Feedforward Neural Network)、邏輯學習機(Logic Learning Machine)、自組織映射(Self-organizing Map)等。
(2) 關聯規則學習(Association Rule Learning)類:先驗演算法(Apriori Algorithm)、Eclat演算法(Eclat Algorithm)、FP-Growth演算法等。
(3)分層聚類演算法(Hierarchical Clustering):單連鎖聚類(Single-linkage Clustering),概念聚類(Conceptual Clustering)等。
(4)聚類分析(Cluster analysis):BIRCH演算法、DBSCAN演算法,期望最大化(Expectation-maximization,EM)、模糊聚類(Fuzzy Clustering)、K-means演算法、K均值聚類(K-means Clustering)、K-medians聚類、均值漂移演算法(Mean-shift)、OPTICS演算法等。
『伍』 python birch的聚類結果怎麼輸出 看某一個具體是什麼分類
、K均值聚類 K-Means演算法思想簡單,效果卻很好,是最有名的聚類演算法。聚類演算法的步驟如下: 1:初始化K個樣本作為初始聚類中心; 2:計算每個樣本點到K個中心的距離,選擇最近的中心作為其分類,直到所有樣本點分類完畢
『陸』 用於數據挖掘的聚類演算法有哪些,各有何優勢
聚類方法的分類,主要分為層次化聚類演算法,劃分式聚類演算法,基於密度的聚類演算法,基於網格的聚類演算法,基於模型的聚類演算法等。
而衡量聚類演算法優劣的標准主要是這幾個方面:處理大的數據集的能力;處理任意形狀,包括有間隙的嵌套的數據的能力;演算法處理的結果與數據輸入的順序是否相關,也就是說演算法是否獨立於數據輸入順序;處理數據雜訊的能力;是否需要預先知道聚類個數,是否需要用戶給出領域知識;演算法處理有很多屬性數據的能力,也就是對數據維數是否敏感。
.聚類演算法主要有兩種演算法,一種是自下而上法(bottom-up),一種是自上而下法(top-down)。這兩種路徑本質上各有優勢,主要看實際應用的時候要根據數據適用於哪一種,Hierarchical methods中比較新的演算法有BIRCH主要是在數據體量很大的時候使用;ROCK優勢在於異常數據抗干擾性強……
關於數據挖掘的相關學習,推薦CDA數據師的相關課程,課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。這種教學方式能夠引發學員的獨立思考及主觀能動性,學員掌握的技能知識可以快速轉化為自身能夠靈活應用的技能,在面對不同場景時能夠自由發揮。點擊預約免費試聽課。
『柒』 聚類演算法的演算法分類
很難對聚類方法提出一個簡潔的分類,因為這些類別可能重疊,從而使得一種方法具有幾類的特徵,盡管如此,對於各種不同的聚類方法提供一個相對有組織的描述依然是有用的,為聚類分析計算方法主要有如下幾種: 劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。而且這K個分組滿足下列條件:
(1) 每一個分組至少包含一個數據紀錄;
(2)每一個數據紀錄屬於且僅屬於一個分組(注意:這個要求在某些模糊聚類演算法中可以放寬);
對於給定的K,演算法首先給出一個初始的分組方法,以後通過反復迭代的方法改變分組,使得每一次改進之後的分組方案都較前一次好,而所謂好的標准就是:同一分組中的記錄越近越好,而不同分組中的紀錄越遠越好。
大部分劃分方法是基於距離的。給定要構建的分區數k,劃分方法首先創建一個初始化劃分。然後,它採用一種迭代的重定位技術,通過把對象從一個組移動到另一個組來進行劃分。一個好的劃分的一般准備是:同一個簇中的對象盡可能相互接近或相關,而不同的簇中的對象盡可能遠離或不同。還有許多評判劃分質量的其他准則。傳統的劃分方法可以擴展到子空間聚類,而不是搜索整個數據空間。當存在很多屬性並且數據稀疏時,這是有用的。為了達到全局最優,基於劃分的聚類可能需要窮舉所有可能的劃分,計算量極大。實際上,大多數應用都採用了流行的啟發式方法,如k-均值和k-中心演算法,漸近的提高聚類質量,逼近局部最優解。這些啟發式聚類方法很適合發現中小規模的資料庫中小規模的資料庫中的球狀簇。為了發現具有復雜形狀的簇和對超大型數據集進行聚類,需要進一步擴展基於劃分的方法。
使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法; 層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。
例如,在「自底向上」方案中,初始時每一個數據紀錄都組成一個單獨的組,在接下來的迭代中,它把那些相互鄰近的組合並成一個組,直到所有的記錄組成一個分組或者某個條件滿足為止。
層次聚類方法可以是基於距離的或基於密度或連通性的。層次聚類方法的一些擴展也考慮了子空間聚類。層次方法的缺陷在於,一旦一個步驟(合並或分裂)完成,它就不能被撤銷。這個嚴格規定是有用的,因為不用擔心不同選擇的組合數目,它將產生較小的計算開銷。然而這種技術不能更正錯誤的決定。已經提出了一些提高層次聚類質量的方法。
代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等; 基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。
這個方法的指導思想就是,只要一個區域中的點的密度大過某個閾值,就把它加到與之相近的聚類中去。
代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等; 基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。這么處理的一個突出的優點就是處理速度很快,通常這是與目標資料庫中記錄的個數無關的,它只與把數據空間分為多少個單元有關。
代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法; 基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。這樣一個模型可能是數據點在空間中的密度分布函數或者其它。它的一個潛在的假定就是:目標數據集是由一系列的概率分布所決定的。
通常有兩種嘗試方向:統計的方案和神經網路的方案。
『捌』 數據挖掘演算法的演算法分類
C4.5就是一個決策樹演算法,它是決策樹(決策樹也就是做決策的節點間像一棵樹一樣的組織方式,其實是一個倒樹)核心演算法ID3的改進演算法,所以基本上了解了一半決策樹構造方法就能構造它。決策樹構造方法其實就是每次選擇一個好的特徵以及分裂點作為當前節點的分類條件。C4.5比ID3改進的地方時:
ID3選擇屬性用的是子樹的信息增益(這里可以用很多方法來定義信息,ID3使用的是熵(entropy)(熵是一種不純度度量准則)),也就是熵的變化值,而C4.5用的是信息增益率。也就是多了個率嘛。一般來說率就是用來取平衡用的,就像方差起的作用差不多,比如有兩個跑步的人,一個起點是100m/s的人、其1s後為110m/s;另一個人起速是1m/s、其1s後為11m/s。如果僅算差值那麼兩個就是一樣的了;但如果使用速度增加率(加速度)來衡量,2個人差距就很大了。在這里,其克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足。在樹構造過程中進行剪枝,我在構造決策樹的時候好討厭那些掛著幾個元素的節點。對於這種節點,乾脆不考慮最好,不然很容易導致overfitting。對非離散數據都能處理,這個其實就是一個個式,看對於連續型的值在哪裡分裂好。也就是把連續性的數據轉化為離散的值進行處理。能夠對不完整數據進行處理,這個重要也重要,其實也沒那麼重要,缺失數據採用一些方法補上去就是了。 (樸素貝葉斯NB)
NB認為各個特徵是獨立的,誰也不關誰的事。所以一個樣本(特徵值的集合,比如「數據結構」出現2次,「文件」出現1次),可以通過對其所有出現特徵在給定類別的概率相乘。比如「數據結構」出現在類1的概率為0.5,「文件」出現在類1的概率為0.3,則可認為其屬於類1的概率為0.5*0.5*0.3。 (支持向量機SVM)
SVM就是想找一個分類得最」好」的分類線/分類面(最近的一些兩類樣本到這個」線」的距離最遠)。這個沒具體實現過,上次聽課,那位老師自稱自己實現了SVM,敬佩其鑽研精神。常用的工具包是LibSVM、SVMLight、MySVM。 (Mining frequent patterns without candidate generation)
這個也不太清楚。FP-growth演算法(Frequent Pattern-growth)使用了一種緊縮的數據結構來存儲查找頻繁項集所需要的全部信息。採用演算法:將提供頻繁項集的資料庫壓縮到一棵FP-tree來保留項集關聯信息,然後將壓縮後的資料庫分成一組條件資料庫(一種特殊類型的投影資料庫),每個條件資料庫關聯一個頻繁項集。 K-Means是一種最經典也是使用最廣泛的聚類方法,時至今日扔然有很多基於其的改進模型提出。K-Means的思想很簡單,對於一個聚類任務(你需要指明聚成幾個類,當然按照自然想法來說不應該需要指明類數,這個問題也是當前聚類任務的一個值得研究的課題),首先隨機選擇K個簇中心,然後反復計算下面的過程直到所有簇中心不改變(簇集合不改變)為止:步驟1:對於每個對象,計算其與每個簇中心的相似度,把其歸入與其最相似的那個簇中。
步驟2:更新簇中心,新的簇中心通過計算所有屬於該簇的對象的平均值得到。
k-means 演算法的工作過程說明如下:首先從n個數據對象任意選擇k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。 BIRCH也是一種聚類演算法,其全稱是Balanced Iterative Recing and Clustering using Hierarchies。BIRCH也是只是看了理論沒具體實現過。是一個綜合的層次聚類特徵(Clustering Feature, CF)和聚類特徵樹(CF Tree)兩個概念,用於概括聚類描述。聚類特徵樹概括了聚類的有用信息,並且佔用空間較元數據集合小得多,可以存放在內存中,從而可以提高演算法在大型數據集合上的聚類速度及可伸縮性。
BIRCH演算法包括以下兩個階段:
1)掃描資料庫,建立動態的一棵存放在內存的CF Tree。如果內存不夠,則增大閾值,在原樹基礎上構造一棵較小的樹。
2)對葉節點進一步利用一個全局性的聚類演算法,改進聚類質量。
由於CF Tree的葉節點代表的聚類可能不是自然的聚類結果,原因是給定的閾值限制了簇的大小,並且數據的輸入順序也會影響到聚類結果。因此需要對葉節點進一步利用一個全局性的聚類演算法,改進聚類質量。 AdaBoost做分類的一般知道,它是一種boosting方法。這個不能說是一種演算法,應該是一種方法,因為它可以建立在任何一種分類演算法上,可以是決策樹,NB,SVM等。
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器(強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。使用adaboost分類器可以排除一些不必要的訓練數據,並將關鍵放在關鍵的訓練數據上面。 GSP,全稱為Generalized Sequential Pattern(廣義序貫模式),是一種序列挖掘演算法。對於序列挖掘沒有仔細看過,應該是基於關聯規則的吧!網上是這樣說的:
GSP類似於Apriori演算法,採用冗餘候選模式的剪除策略和特殊的數據結構-----哈希樹來實現候選模式的快速訪存。
GSP演算法描述:
1)掃描序列資料庫,得到長度為1的序列模式L1,作為初始的種子集。
2)根據長度為i 的種子集Li ,通過連接操作和修剪操作生成長度為i+1的候選序列模式Ci+1;然後掃描序列資料庫,計算每個候選序列模式的支持度,產生長度為i+1的序列模式Li+1,並將Li+1作為新的種子集。
3)重復第二步,直到沒有新的序列模式或新的候選序列模式產生為止。
產生候選序列模式主要分兩步:
連接階段:如果去掉序列模式s1的第一個項目與去掉序列模式s2的最後一個項目所得到的序列相同,則可以將s1與s2進行連接,即將s2的最後一個項目添加到s1中。
修切階段:若某候選序列模式的某個子序列不是序列模式,則此候選序列模式不可能是序列模式,將它從候選序列模式中刪除。
候選序列模式的支持度計算:對於給定的候選序列模式集合C,掃描序列資料庫,對於其中的每一條序列s,找出集合C中被s所包含的所有候選序列模式,並增加其支持度計數。 又是一個類似Apriori的序列挖掘。
其中經典十大演算法為:C4.5,K-Means,SVM,Apriori,EM,PageRank,AdaBoost,KNN,NB和CART。
『玖』 數據分類和聚類有什麼區別
主要區別是,性質不同、目的不同、應用不同,具體如下:
一、性質不同
1、數據分類
數據分類就是把具有某種共同屬性或特徵的數據歸並在一起,通過其類別的屬性或特徵來對數據進行區別。為了實現數據共享和提高處理效率,必須遵循約定的分類原則和方法,按照信息的內涵、性質及管理的要求,將系統內所有信息按一定的結構體系分為不同的集合,從而使得每個信息在相應的分類體系中都有一個對應位置。
2、數據聚類
數據聚類是指根據數據的內在性質將數據分成一些聚合類,每一聚合類中的元素盡可能具有相同的特性,不同聚合類之間的特性差別盡可能大。
二、目的不同
1、數據分類
數據分類的目的是根據新數據對象的屬性,將其分配到一個正確的類別中。
2、數據聚類
聚類分析的目的是分析數據是否屬於各個獨立的分組,使一組中的成員彼此相似,而與其他組中的成員不同。
三、應用不同
1、數據分類
應用於統計學、計算機控制。
2、數據聚類
廣泛應用於機器學習,數據挖掘,模式識別,圖像分析以及生物信息等。
以上內容參考網路-數據分類、網路-數據聚類