dvhop定位演算法
① 無線網路(Wi-Fi) 畢業設計
相關範文:
無線感測器網路自身定位演算法開題報告
1.概述:
無線感測器網路(WSNs)是由許多感測器節點通過自組織的形式組成的一種特殊的Ad-hoc網路,每一個感測器節點由數據採集模塊、數據處理和控制模塊、通信模塊和供電模塊等組成,此外還可能包括與應用相關的其他部分,比如定位系統、動力系統等。藉助於內置多樣的感測器,可以測量溫度、濕度、氣壓、化學等我們感興趣的物理現象。
2.研究動機:
感測器節點的自身定位是感測器網路應用的基礎。例如目標監測與跟蹤、基於位置信息的路由、智能交通、物流管理等許多應用都要求網路節點預先知道自身的位置,並在通信和協作過程中利用位置信息完成應用要求。若沒有位置信息,感測器節點所採集的數據幾乎是沒有應用價值的。所以,在無線感測器網路的應用中,節點的定位成為關鍵的問題。
3.研究意義:
最早期的基於無線網路的室內定位系統,都採用了額外的硬體和設備,如AT&T Cambridge的Active Bat系統,採用了超聲波測距技術,定位的物體攜帶由控制邏輯、無線收發器和超聲波換能器組成的稱為Bat的設備,發出的信號由安裝在房間天花板上的超聲波接收器接收,所有接收器通過有線網路連接;在微軟的RADAR系統中,定位目標要攜帶具有測量RF信號強度的感測器,還要有基站定期發送RF信號,在事先實現的RF信號的資料庫中查詢實現定位;MIT開發了最早的鬆散耦合定位系統Cricket,錨節點(預先部署位置的節點)隨機地同時發射RF和超聲波信號,RF信號中包括該錨節點的位置,未知節點接收這些信號,然後使用TDOA技術測量與錨節點的距離來實現定位。
以上系統都需要事先的網路部署或數據生成工作,無法適用於Ad-hoc網路。現階段研究較多的是不基於測距(Range-free)的定位演算法,這樣就無需增加額外的硬體,還可以減小感測器節點的體積。
4.研究目標:
(1) 較小的能耗
感測器節點所攜帶能源有限和不易更換的特點要求定位演算法應該是低能耗的。
(2) 較高的定位精度
這是衡量定位演算法的一個重要指標,一般以誤差與無線射程的比值來計算,20%表示定位誤差相當於節點無線射程的20%。
(3) 計算方式是分布式的
分布式的定位演算法,即計算節點位置的工作在節點本地完成,分布式演算法可以應用於大規模的感測器網路。
(4) 較低的錨節點密度
錨節點定位通常依賴人工部署或GPS實現。大量的人工部署不適合Ad-hoc網路,而且錨節點的成本比普通節點要高兩個數量級。
(5) 較短的覆蓋時間。
5.參考文獻:
《無線感測器網路:體系結構與協議》作者:Edgar H. Callaway. Jr
《無線感測器網路的理論及應用》作者:王殊
《無線感測器網路節點定位演算法研究》作者:端木慶敏 Publish: 2007-10-18 Hits:591
《無線感測器網路定位演算法研究》作者:申屠明2007-07-11
《無線感測器網路節點自身定位演算法的研究(碩士)》來自:中國文檔網
《無線感測器網路DV-Hop定位演算法的改進》作者:龔思來2007年07月13日
其他相關:
http://www.jianshewang.com/lunwen/cheng/txx/200811/2200.html
僅供參考,請自借鑒
希望對您有幫助
② dvhop 演算法中,定位誤差跟信標節點的個數與通信距離關系 我模擬出來的結果不太正確 哪位大俠指點下
你運行下這個程序,應該是正確的。
%~~~~~~~~~~ DV-Hop演算法 ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~
% BorderLength-----正方形區域的邊長,單位:m
% NodeAmount-------網路節點的個數
% BeaconAmount---信標節點數
% Sxy--------------用於存儲節點的序號,橫坐標,縱坐標的矩陣
%Beacon----------信標節點坐標矩陣;BeaconAmount*BeaconAmount
%UN-------------未知節點坐標矩陣;2*UNAmount
% Distance------未知節點到信標節點距離矩陣;2*BeaconAmount
%h---------------節點間初始跳數矩陣
%X---------------節點估計坐標初始矩陣,X=[x,y]'
% R------------------節點的通信距離,一般為10-100m
clear,close all;
BorderLength=100;
NodeAmount=100;
BeaconAmount=8;
UNAmount=NodeAmount-BeaconAmount;
R=50;
% D=zeros(NodeAmount,NodeAmount);%未知節電到信標節點距離初始矩陣;BeaconAmount行NodeAmount列
h=zeros(NodeAmount,NodeAmount);%初始跳數為0;BeaconAmount行NodeAmount列
X=zeros(2,UNAmount);%節點估計坐標初始矩陣
%~~~~~~~~~在正方形區域內產生均勻分布的隨機拓撲~~~~~~~~~~~~~~~~~~~~
C=BorderLength.*rand(2,NodeAmount);
%帶邏輯號的節點坐標
Sxy=[[1:NodeAmount];C];
Beacon=[Sxy(2,1:BeaconAmount);Sxy(3,1:BeaconAmount)];%信標節點坐標
UN=[Sxy(2,(BeaconAmount+1):NodeAmount);Sxy(3,(BeaconAmount+1):NodeAmount)];%未知節點坐標
%畫出節點分布圖
plot(Sxy(2,1:BeaconAmount),Sxy(3,1:BeaconAmount),'r*',Sxy(2,(BeaconAmount+1):NodeAmount),Sxy(3,(BeaconAmount+1):NodeAmount),'k.')
xlim([0,BorderLength]);
ylim([0,BorderLength]);
title('* 紅色信標節點 . 黑色未知節點')
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~初始化節點間距離、跳數矩陣~~~~~~~~~~~~~~~~~~~~~~
for i=1:NodeAmount
for j=1:NodeAmount
Dall(i,j)=((Sxy(2,i)-Sxy(2,j))^2+(Sxy(3,i)-Sxy(3,j))^2)^0.5;%所有節點間相互距離
if (Dall(i,j)<=R)&(Dall(i,j)>0)
h(i,j)=1;%初始跳數矩陣
elseif i==j
h(i,j)=0;
else h(i,j)=inf;
end
end
end
%~~~~~~~~~~~最短路經演算法計算節點間跳數~~~~~~~~~~~~~~~~~~~~
for k=1:NodeAmount
for i=1:NodeAmount
for j=1:NodeAmount
if h(i,k)+h(k,j)<h(i,j)%min(h(i,j),h(i,k)+h(k,j))
h(i,j)=h(i,k)+h(k,j);
end
end
end
end
h
%~~~~~~~~~~~~~求每個信標節點的校正值~~~~~~~~~~~~~~~~~~~~~~~~~~
h1=h(1:BeaconAmount,1:BeaconAmount);
D1=Dall(1:BeaconAmount,1:BeaconAmount);
for i=1:BeaconAmount
dhop(i,1)=sum(D1(i,:))/sum(h1(i,:));%每個信標節點的平均每跳距離
end
D2=Dall(1:BeaconAmount,(BeaconAmount+1):NodeAmount);%BeaconAmount行UNAmount列
for i=1:BeaconAmount
for j=1:UNAmount
if min(D2(:,j))==D2(i,j)
Dhop(1,j)=D2(i,j);%未知節點從最近的信標獲得校正值
end
end
end
Dhop
%~~~~~~~~~~~~~~~~用跳數估計距離~~~~~~~~~~~~~~~~~~~
hop1=h(1:BeaconAmount,(BeaconAmount+1):NodeAmount)%未知節點到信標跳數,BeaconAmount行UNAmount列
for i=1:UNAmount
hop=Dhop(1,i);%hop為從最近信標獲得的校正值
Distance(:,i)=hop*hop1(:,i);%%Beacon行UN列;
end
% %~~~~~~~~~~~~~~~~~最小二乘法求未知點坐標~~~~~~~~~~~~~~~~~~~~~~~~
d=Distance;
for i=1:2
for j=1:(BeaconAmount-1)
a(i,j)=Beacon(i,j)-Beacon(i,BeaconAmount);
end
end
A=-2*(a');
% d=d1';
for m=1:UNAmount
for i=1:(BeaconAmount-1)
B(i,1)=d(i,m)^2-d(BeaconAmount,m)^2-Beacon(1,i)^2+Beacon(1,BeaconAmount)^2-Beacon(2,i)^2+Beacon(2,BeaconAmount)^2;
end
X1=inv(A'*A)*A'*B;
X(1,m)=X1(1,1);
X(2,m)=X1(2,1);
end
UN
X
for i=1:UNAmount
error(1,i)=(((X(1,i)-UN(1,i))^2+(X(2,i)-UN(2,i))^2)^0.5);
end
figure;plot(error,'-o')
title('每個未知節點的誤差')
error=sum(error)/UNAmount
Accuracy=error/R
③ 請問有無線感測器網I加權質心演算法matlab代碼嗎
[capture-of-moving.rar] - 本文詳細介紹了在視頻圖像的基礎上用!"#$ & 』(( )*+ 實現運動目標形心捕獲的具體程序"從而可以實現運動 目標的位置檢測 程序運用改進的形心演算法計算目標圖形 的中心坐標"並使用了計時器函數實時顯示坐標變化值
[codebook.rar] - 實現了基於碼書的運動檢測,並有與其他的檢測演算法做對比,例如MOG,Bayes,三幀差分等。
[xin.rar] - 無線感測器網路加權質心自定位演算法中加權質心演算法模擬
[qq1_2.rar] - 3種定位演算法(多邊:3 邊及4邊 最小二乘 質心)的主程序
[802.11opnet.rar] - 802.11opnet,802.11在OPNET中的模擬代碼
[rssic.rar] - 無線感測器網路的加權質心演算法,用matlab編程的,需要的可以參考
[Simulation1.rar] - 本程序先使用RSSI中對數常態模型來測距離,然後用三邊測量法來計算未知節點的坐標。
[RSSIxin.rar] - 基於RSSI測距的無線感測器網路改進質心定位演算法
[xinsuanfa2.rar] - 無線感測器網路中質心演算法,並有錨節點比例和誤差分析
[myDVHOP.rar] - 一種基於RSSI的DV-HOP加權演算法,該演算法基於節點接收信標節點位置元組時的信號強度(RSSI)對鄰居節點間跳數進行加權處理,將節點間的跳數與距離相關聯,模擬試驗結果證明該加權演算法可大大提高定位精度。
④ 跪求一篇3000漢字(英譯漢)的外文文獻
With the large-scale development of mobile communication technology and the coming of the 3G era, wireless location technology of cellular network is more and more mature in theory, also appeared more and more research in application, the localization technology in cellular communication system not only provides the position information service for the users, emergency assistance and goods-tracing function, in ensuring national security and crime also play an effective role. Basic principle of wireless cellular network positioning system is in a cellular network, according to the location of the mobile station (characteristic parameters such as arrival time TOA, the time difference of arrival TDOA, angle of arrival, AOA) were measured and the estimation of the location of the mobile station, the mobile location. Firstly, this paper introces the application of the wireless location technique in cellular networks, the cellular network system and various common positioning technology are discussed. Secondly, this paper introces the TOA positioning algorithm based on the basic principle and mathematical model of TDOA location algorithm in cellular network, analysis of the NLOS error model and its influence on the positioning system, at the same time of the traditional localization algorithm (such as Chan algorithm, Fang algorithm, Friedlander and Taylor series expansion method) were studied, too the analysis of location algorithm for a NLOS error. Finally, this paper introces the positioning technology based on OFDM signal, introces the positioning using OFDM signal strengths, the OFDM signal TOA estimation algorithm and localization algorithm has concted the simulation research.AdHoc network is a self-organizing network, which has no communication infrastructure support can be communication between mobile nodes in a few. The adhoc has flexible networking, resource characteristics such as effective utilization, it will have broad application prospects in military communications, emergency communications, business application environment. However, at the same time, because of its high bit error rate, limited battery capacity, easy to be monitored and other issues, we need to constantly improve and perfect. AdHoc network is a new network, there are still a lot of problems, the realization, practical and a lot of work to do. Because the AdHoc network of multi-hop wireless transmission and the network topology changes, TCP performance than the wired network deterioration. How to solve the problem of TCP application in AdHoc network is facing an urgent problem to be solved. Now the main research direction of TCP to improve the performance of AdHoc network focus on the improvement of MAC layer, network layer, transport layer mechanisms, and improved based on the original architecture has been added a layer. TCP is the core of congestion control mechanism. The current version of TCP are mainly Tahoe, Reno, NewReno, SACK and Vegas several, and an improved scheme for wireless networks called DA. Congestion control mechanism of TahoeTCP is divided into three stages, namely, slow start, congestion avoidance, fast retransmission. Several TCP are based on TCPTahoe, but all were improved, so that TCP can run more efficiently or suitable for a particular network state. RenoTCP is currently the most widely used in the Internet version of TCP. It increases fast recovery based on Tahoe. NewRenoTCP is a small improvement in RenoTCP, it solves the RenoTCP in fast recovery of multiple packet lost problem. Selective acknowledgement (SACK) through the receiver selectivity for data validation to improve the performance of TCP, it can solve a window lost packets problem. DA is the mechanism, it is specially designed for wireless networks to improve the shared channel to do. VegasTCP has a congestion is completely different from the former five TCP control mechanism. Three kinds of technology of Vegas is mainly used to improve throughput reces loss. Because the TCP is designed for wired networks, it is premise of effective operation of the assumption that packet loss is caused by network congestion. TCP the packet loss as network has signs of congestion, each detects a packet loss, TCP will start the congestion control mechanism, rece the sending rate of the sender, thereby recing the congestion degree. But in the AdHoc network, packet loss are not by network congestion. The high error rate of wireless channel, caused by node movement route interrupt, MAC layer conflicts can cause packet loss, then start the TCP congestion control is not necessary, so that the throughput of TCP significantly decreased. In order to make TCP better adapt to the AdHoc network, needs to be improved. NS is the acronym NetworkSimulator, which is composed of LBNL () network simulation tool developed by the research team. NS is an extensible, configurable, programmable event driven network simulation software. The simulation in this paper are based on the NS2. The performance of various versions of TCP in AdHoc network is simulated, and the effects of the AdHoc network is a multihop and mobile characteristics on the performance of TCP, and TCP properties of the various versions of the comparison, find out under various conditions is most suitable for AdHoc network TCP. Then the performance of the DA mechanism for wireless networks is applied to the AdHoc network has made the further analysis and put forward the improvement on it. TCP improve the performance of AdHoc network and then a variety of published literature has been proposed in the scheme are summarized and their evaluation, including the improvement of the MAC layer, to improve the network layer, to improve the transport layer, improve the comprehensive improvement and other aspects. The improvement was mostly focused on the network layer and above, and the improved plan mostly increases the complexity of the algorithm, this is very adverse to the mobile node energy limited. Main reason for the decline in performance of multi-hop TCP adhoc networks is not the stability of the MAC layer of the exposed terminal problem and binary backoff mechanism inced by TCP, so the AdHoc network MAC layer is improved, the first is not stability for the AdHoc network e to the multi-hop characteristic causes the TCP to put forward their own improvement, and analysis the results of simulation and improvement. Then the improved scheme is put forward on the channel exists in multi-hop adhoc networks to lock the unfairness caused, and simulation analysis proved that the improvement can not only improved AdHoc network has many unfair problems of connection, not stability but also can improve TCP, increase throughput, the two improved are relatively simple, no increase of mobile node energy consumption and network load, mobility is not suitable for adhoc network.
翻譯:隨著移動通信技術的大規模發展,3G時代的到來,蜂窩網無線定位技術在理論上是越來越成熟,也出現了越來越多的應用研究,蜂窩移動通信系統定位技術不僅提供位置信息服務的用戶,緊急援助和貨物跟蹤功能,在確保國家安全的犯罪也發揮有效的作用。無線蜂窩網路定位系統的基本原理是在蜂窩網路中,根據移動台的位置(特徵參數,如到達時間TOA,TDOA的到達時間差的到達,AOA,角)進行了測量和移動台的位置的估計,移動位置。首先,本文介紹了無線定位技術在蜂窩網路中的應用,蜂窩網路系統和各種常見的定位技術進行了討論。其次,本文介紹了基於的基本原理和在蜂窩網路的TDOA定位演算法數學模型的TOA定位演算法,對NLOS誤差模型和定位系統的影響分析,在傳統的定位演算法相同的時間(如Chan演算法,Fang演算法,弗里德蘭德和泰勒級數展開法)進行了研究,也對NLOS誤差的定位演算法分析。最後,本文介紹了基於OFDM信號的定位技術,介紹了採用OFDM信號強度的定位,OFDM信號TOA估計演算法和定位演算法進行了模擬research.adhoc網路是一種自組織網路,沒有通信基礎設施的支持,可在一些移動節點之間的通信。AdHoc具有組網靈活等特點,資源的有效利用,將有廣闊的應用前景,在軍事通信,應急通信,商業應用環境。然而,在同一時間,因為它的誤碼率高,電池容量有限,容易被監測和其他問題,我們需要不斷的改進和完善。Ad Hoc網路是一種新的網路,還存在很多問題,實現,做實踐和大量的工作。由於多跳無線AdHoc網路傳輸和網路拓撲結構的變化,比有線網路的TCP性能惡化。如何解決自組織網路中的TCP應用問題是面臨的一個迫切需要解決的問題。目前主要研究方向的TCP改善AdHoc網路的集中在MAC層的性能,提高網路層,傳輸層機制,並基於原有體系結構改進增加了一層。TCP擁塞控制機制的核心是。當前的TCP版本主要是太浩湖,雷諾,NewReno,SACK和Vegas幾種,和一種改進的無線網路方案稱為大。tahoetcp的擁塞控制機制分為三個階段,即,慢啟動,擁塞避免,快速重傳。TCP是基於tcptahoe,但都進行了改進,使TCP可以更高效地運行或適合特定的網路狀態。renotcp是目前在TCP網路版,使用最廣泛的。它增加了基於Tahoe快速恢復。newrenotcp是renotcp小改進,解決了renotcp中的多個數據包的快速恢復丟失的問題。選擇性確認(SACK)通過接收器的選擇性數據驗證提高TCP的性能,它可以解決一個窗口的數據包丟失的問題。大的機構,它是專為無線網路提高共享信道的去做。vegastcp具有擁塞控制機制TCP從以前的五完全不同。三種技術的拉斯維加斯主要用於提高吞吐量降低