a星演算法源碼
『壹』 A*搜尋演算法的演算法描述
f(x) = g(x) + h(x)
function A*(start,goal)
var closed := the empty set
var q := make_queue(path(start))
while q is not empty
var p := remove_first(q)
var x := the last node of p
if x in closed
continue
if x = goal
return p
add x to closed
foreach y in successors(x)
enqueue(q, p, y)
return failure A*改變它自己行為的能力基於啟發式代價函數,啟發式函數在游戲中非常有用。在速度和精確度之間取得折衷將會讓你的游戲運行得更快。在很多游戲中,你並不真正需要得到最好的路徑,僅需要近似的就足夠了。而你需要什麼則取決於游戲中發生著什麼,或者運行游戲的機器有多快。假設你的游戲有兩種地形,平原和山地,在平原中的移動代價是1而在山地的是3,那麼A星演算法就會認為在平地上可以進行三倍於山地的距離進行等價搜尋。 這是因為有可能有一條沿著平原到山地的路徑。把兩個鄰接點之間的評估距離設為1.5可以加速A*的搜索過程。然後A*會將3和1.5比較,這並不比把3和1比較差。然而,在山地上行動有時可能會優於繞過山腳下進行行動。所以花費更多時間尋找一個繞過山的演算法並不經常是可靠的。 同樣的,想要達成這樣的目標,你可以通過減少在山腳下的搜索行為來打到提高A星演算法的運行速率。弱項如此可以將A星演算法的山地行動耗費從3調整為2即可。這兩種方法都會給出可靠地行動策略 。
『貳』 A*演算法java實現
代碼實現(Java)
1. 輸入
(1) 代表地圖二值二維數組(0表示可通路,1表示路障)
int[][] maps = {
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0 },
{ 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 },
{ 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }
};123456789123456789
(2) 按照二維數組的特點,坐標原點在左上角,所以y是高,x是寬,y向下遞增,x向右遞增,我們將x和y封裝成一個類,好傳參,重寫equals方法比較坐標(x,y)是不是同一個。
public class Coord
{
public int x;
public int y;
public Coord(int x, int y)
{
this.x = x;
this.y = y;
}
@Override
public boolean equals(Object obj)
{
if (obj == null) return false;
if (obj instanceof Coord)
{
Coord c = (Coord) obj;
return x == c.x && y == c.y;
}
return false;
}
}2223
(3) 封裝路徑結點類,欄位包括:坐標、G值、F值、父結點,實現Comparable介面,方便優先隊列排序。
public class Node implements Comparable
{
public Coord coord; // 坐標
public Node parent; // 父結點
public int G; // G:是個准確的值,是起點到當前結點的代價
public int H; // H:是個估值,當前結點到目的結點的估計代價
public Node(int x, int y)
{
this.coord = new Coord(x, y);
}
public Node(Coord coord, Node parent, int g, int h)
{
this.coord = coord;
this.parent = parent;
G = g;
H = h;
}
@Override
public int compareTo(Node o)
{
if (o == null) return -1;
if (G + H > o.G + o.H)
return 1;
else if (G + H < o.G + o.H) return -1;
return 0;
}
}
(4) 最後一個數據結構是A星演算法輸入的所有數據,封裝在一起,傳參方便。:grin:
public class MapInfo
{
public int[][] maps; // 二維數組的地圖
public int width; // 地圖的寬
public int hight; // 地圖的高
public Node start; // 起始結點
public Node end; // 最終結點
public MapInfo(int[][] maps, int width, int hight, Node start, Node end)
{
this.maps = maps;
this.width = width;
this.hight = hight;
this.start = start;
this.end = end;
}
}
2. 處理
(1) 在演算法里需要定義幾個常量來確定:二維數組中哪個值表示障礙物、二維數組中繪制路徑的代表值、計算G值需要的橫縱移動代價和斜移動代價。
public final static int BAR = 1; // 障礙值
public final static int PATH = 2; // 路徑
public final static int DIRECT_VALUE = 10; // 橫豎移動代價
public final static int OBLIQUE_VALUE = 14; // 斜移動代價12341234
(2) 定義兩個輔助表:Open表和Close表。Open表的使用是需要取最小值,在這里我們使用Java工具包中的優先隊列PriorityQueue,Close只是用來保存結點,沒其他特殊用途,就用ArrayList。
Queue openList = new PriorityQueue(); // 優先隊列(升序)
List closeList = new ArrayList();1212
(3) 定義幾個布爾判斷方法:最終結點的判斷、結點能否加入open表的判斷、結點是否在Close表中的判斷。
/**
* 判斷結點是否是最終結點
*/
private boolean isEndNode(Coord end,Coord coord)
{
return coord != null && end.equals(coord);
}
/**
* 判斷結點能否放入Open列表
*/
private boolean canAddNodeToOpen(MapInfo mapInfo,int x, int y)
{
// 是否在地圖中
if (x 0 || x >= mapInfo.width || y 0 || y >= mapInfo.hight) return false;
// 判斷是否是不可通過的結點
if (mapInfo.maps[y][x] == BAR) return false;
// 判斷結點是否存在close表
if (isCoordInClose(x, y)) return false;
return true;
}
/**
* 判斷坐標是否在close表中
*/
private boolean isCoordInClose(Coord coord)
{
return coord!=null&&isCoordInClose(coord.x, coord.y);
}
/**
* 判斷坐標是否在close表中
*/
private boolean isCoordInClose(int x, int y)
{
if (closeList.isEmpty()) return false;
for (Node node : closeList)
{
if (node.coord.x == x && node.coord.y == y)
{
return true;
}
}
return false;
}353637383940414243444546
(4) 計算H值,「曼哈頓」 法,坐標分別取差值相加
private int calcH(Coord end,Coord coord)
{
return Math.abs(end.x - coord.x) + Math.abs(end.y - coord.y);
}12341234
(5) 從Open列表中查找結點
private Node findNodeInOpen(Coord coord)
{
if (coord == null || openList.isEmpty()) return null;
for (Node node : openList)
{
if (node.coord.equals(coord))
{
return node;
}
}
return null;
}
(6) 添加鄰結點到Open表
/**
* 添加所有鄰結點到open表
*/
private void addNeighborNodeInOpen(MapInfo mapInfo,Node current)
{
int x = current.coord.x;
int y = current.coord.y;
// 左
addNeighborNodeInOpen(mapInfo,current, x - 1, y, DIRECT_VALUE);
// 上
addNeighborNodeInOpen(mapInfo,current, x, y - 1, DIRECT_VALUE);
// 右
addNeighborNodeInOpen(mapInfo,current, x + 1, y, DIRECT_VALUE);
// 下
addNeighborNodeInOpen(mapInfo,current, x, y + 1, DIRECT_VALUE);
// 左上
addNeighborNodeInOpen(mapInfo,current, x - 1, y - 1, OBLIQUE_VALUE);
// 右上
addNeighborNodeInOpen(mapInfo,current, x + 1, y - 1, OBLIQUE_VALUE);
// 右下
addNeighborNodeInOpen(mapInfo,current, x + 1, y + 1, OBLIQUE_VALUE);
// 左下
addNeighborNodeInOpen(mapInfo,current, x - 1, y + 1, OBLIQUE_VALUE);
}
/**
* 添加一個鄰結點到open表
*/
private void addNeighborNodeInOpen(MapInfo mapInfo,Node current, int x, int y, int value)
{
if (canAddNodeToOpen(mapInfo,x, y))
{
Node end=mapInfo.end;
Coord coord = new Coord(x, y);
int G = current.G + value; // 計算鄰結點的G值
Node child = findNodeInOpen(coord);
if (child == null)
{
int H=calcH(end.coord,coord); // 計算H值
if(isEndNode(end.coord,coord))
{
child=end;
child.parent=current;
child.G=G;
child.H=H;
}
else
{
child = new Node(coord, current, G, H);
}
openList.add(child);
}
else if (child.G > G)
{
child.G = G;
child.parent = current;
// 重新調整堆
openList.add(child);
}
}
}85960618596061
(7) 回溯法繪制路徑
private void drawPath(int[][] maps, Node end)
{
if(end==null||maps==null) return;
System.out.println("總代價:" + end.G);
while (end != null)
{
Coord c = end.coord;
maps[c.y][c.x] = PATH;
end = end.parent;
}
}12345678910111234567891011
(8) 開始演算法,循環移動結點尋找路徑,設定循環結束條件,Open表為空或者最終結點在Close表
public void start(MapInfo mapInfo)
{
if(mapInfo==null) return;
// clean
openList.clear();
closeList.clear();
// 開始搜索
openList.add(mapInfo.start);
moveNodes(mapInfo);
}
/**
* 移動當前結點
*/
private void moveNodes(MapInfo mapInfo)
{
while (!openList.isEmpty())
{
if (isCoordInClose(mapInfo.end.coord))
{
drawPath(mapInfo.maps, mapInfo.end);
break;
}
Node current = openList.poll();
closeList.add(current);
addNeighborNodeInOpen(mapInfo,current);
}
}
單元和區域和數值,,,中的最大
『叄』 cocos2dx 什麼是a星演算法
您好,我來為您解答:
A*搜尋演算法俗稱A星演算法。這是一種在圖形平面上,有多個節點的路徑,求出最低通過成本的演算法。常用於游戲中的NPC的移動計算,或線上游戲的BOT的移動計算上。
如果我的回答沒能幫助您,請繼續追問。
『肆』 如何基於cocos2dx3.x實現A星尋路演算法
實現A星演算法 根據演算法,第一步是添加當前坐標到open列表。還需要三個輔助方法: - 一個方法用來插入一個ShortestPathStep對象到適當的位置(有序的F值) - 一個方法用來計算從一個方塊到相鄰方塊的移動數值 - 一個方法是根據"曼哈頓距離"演算法
『伍』 游戲中的A星演算法怎麼寫
首先A星演算法佔內存和CPU簡直要命,之前用AS3寫的代碼90*90格僅6個敵人每次同時尋路都得卡上幾秒,還經常找不到路,反正我目前還沒想到好的優化方法。
『陸』 如何在使用Cocos2D中實現A星(A*)尋路演算法
實現A星演算法
根據演算法,第一步是添加當前坐標到open列表。還需要三個輔助方法:
- 一個方法用來插入一個ShortestPathStep對象到適當的位置(有序的F值)
- 一個方法用來計算從一個方塊到相鄰方塊的移動數值
- 一個方法是根據"曼哈頓距離"演算法,計算方塊的H值。
ssize_t CatSprite::getStepIndex(const cocos2d::Vector<CatSprite::ShortestPathStep *> &steps, const CatSprite::ShortestPathStep *step)
{
for (ssize_t i = 0; i < steps.size(); ++i)
{
if (steps.at(i)->isEqual(step))
{
return i;
}
}
return -1;
}
『柒』 是的 計算機演算法
計算機演算法是以一步接一步的方式來詳細描述計算機如何將輸入轉化為所要求的輸出的過程,或者說,演算法是對計算機上執行的計算過程的具體描述。
編輯本段演算法性質一個演算法必須具備以下性質: (1)演算法首先必須是正確的,即對於任意的一組輸入,包括合理的輸入與不合理的輸入,總能得到預期的輸出。如果一個演算法只是對合理的輸入才能得到預期的輸出,而在異常情況下卻無法預料輸出的結果,那麼它就不是正確的。 (2)演算法必須是由一系列具體步驟組成的,並且每一步都能夠被計算機所理解和執行,而不是抽象和模糊的概念。 (3)每個步驟都有確定的執行順序,即上一步在哪裡,下一步是什麼,都必須明確,無二義性。 (4)無論演算法有多麼復雜,都必須在有限步之後結束並終止運行,即演算法的步驟必須是有限的。在任何情況下,演算法都不能陷入無限循環中。 一個問題的解決方案可以有多種表達方式,但只有滿足以上4個條件的解才能稱之為演算法。編輯本段重要演算法A*搜尋演算法
俗稱A星演算法。這是一種在圖形平面上,有多個節點的路徑,求出最低通過成本的演算法。常用於游戲中的NPC的移動計算,或線上游戲的BOT的移動計算上。該演算法像Dijkstra演算法一樣,可以找到一條最短路徑;也像BFS一樣,進行啟發式的搜索。
Beam Search
束搜索(beam search)方法是解決優化問題的一種啟發式方法,它是在分枝定界方法基礎上發展起來的,它使用啟發式方法估計k個最好的路徑,僅從這k個路徑出發向下搜索,即每一層只有滿意的結點會被保留,其它的結點則被永久拋棄,從而比分枝定界法能大大節省運行時間。束搜索於20 世紀70年代中期首先被應用於人工智慧領域,1976 年Lowerre在其稱為HARPY的語音識別系統中第一次使用了束搜索方法,他的目標是並行地搜索幾個潛在的最優決策路徑以減少回溯,並快速地獲得一個解。
二分取中查找演算法
一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。這種搜索演算法每一次比較都使搜索范圍縮小一半。
Branch and bound
分支定界(branch and bound)演算法是一種在問題的解空間樹上搜索問題的解的方法。但與回溯演算法不同,分支定界演算法採用廣度優先或最小耗費優先的方法搜索解空間樹,並且,在分支定界演算法中,每一個活結點只有一次機會成為擴展結點。
數據壓縮
數據壓縮是通過減少計算機中所存儲數據或者通信傳播中數據的冗餘度,達到增大數據密度,最終使數據的存儲空間減少的技術。數據壓縮在文件存儲和分布式系統領域有著十分廣泛的應用。數據壓縮也代表著尺寸媒介容量的增大和網路帶寬的擴展。
Diffie–Hellman密鑰協商
Diffie–Hellman key exchange,簡稱「D–H」,是一種安全協議。它可以讓雙方在完全沒有對方任何預先信息的條件下通過不安全信道建立起一個密鑰。這個密鑰可以在後續的通訊中作為對稱密鑰來加密通訊內容。
Dijkstra』s 演算法
迪科斯徹演算法(Dijkstra)是由荷蘭計算機科學家艾茲格·迪科斯徹(Edsger Wybe Dijkstra)發明的。演算法解決的是有向圖中單個源點到其他頂點的最短路徑問題。舉例來說,如果圖中的頂點表示城市,而邊上的權重表示著城市間開車行經的距離,迪科斯徹演算法可以用來找到兩個城市之間的最短路徑。
動態規劃
動態規劃是一種在數學和計算機科學中使用的,用於求解包含重疊子問題的最優化問題的方法。其基本思想是,將原問題分解為相似的子問題,在求解的過程中通過子問題的解求出原問題的解。動態規劃的思想是多種演算法的基礎,被廣泛應用於計算機科學和工程領域。比較著名的應用實例有:求解最短路徑問題,背包問題,項目管理,網路流優化等。這里也有一篇文章說得比較詳細。
歐幾里得演算法
在數學中,輾轉相除法,又稱歐幾里得演算法,是求最大公約數的演算法。輾轉相除法首次出現於歐幾里得的《幾何原本》(第VII卷,命題i和ii)中,而在中國則可以追溯至東漢出現的《九章算術》。
最大期望(EM)演算法
在統計計算中,最大期望(EM)演算法是在概率(probabilistic)模型中尋找參數最大似然估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variable)。最大期望經常用在機器學習和計算機視覺的數據聚類(Data Clustering)領域。最大期望演算法經過兩個步驟交替進行計算,第一步是計算期望(E),利用對隱藏變數的現有估計值,計算其最大似然估計值;第二步是最大化(M),最大化在 E 步上求得的最大似然值來計算參數的值。M 步上找到的參數估計值被用於下一個 E 步計算中,這個過程不斷交替進行。
快速傅里葉變換(FFT)
快速傅里葉變換(Fast Fourier Transform,FFT),是離散傅里葉變換的快速演算法,也可用於計算離散傅里葉變換的逆變換。快速傅里葉變換有廣泛的應用,如數字信號處理、計算大整數乘法、求解偏微分方程等等。
哈希函數
HashFunction是一種從任何一種數據中創建小的數字「指紋」的方法。該函數將數據打亂混合,重新創建一個叫做散列值的指紋。散列值通常用來代表一個短的隨機字母和數字組成的字元串。好的散列函數在輸入域中很少出現散列沖突。在散列表和數據處理中,不抑制沖突來區別數據,會使得資料庫記錄更難找到。
堆排序
Heapsort是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法。堆積樹是一個近似完全二叉樹的結構,並同時滿足堆積屬性:即子結點的鍵值或索引總是小於(或者大於)它的父結點。
歸並排序
Merge sort是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
RANSAC 演算法
RANSAC 是」RANdom SAmpleConsensus」的縮寫。該演算法是用於從一組觀測數據中估計數學模型參數的迭代方法,由Fischler and Bolles在1981提出,它是一種非確定性演算法,因為它只能以一定的概率得到合理的結果,隨著迭代次數的增加,這種概率是增加的。該演算法的基本假設是觀測數據集中存在」inliers」(那些對模型參數估計起到支持作用的點)和」outliers」(不符合模型的點),並且這組觀測數據受到雜訊影響。RANSAC 假設給定一組」inliers」數據就能夠得到最優的符合這組點的模型。
RSA加密演演算法
這是一個公鑰加密演算法,也是世界上第一個適合用來做簽名的演算法。今天的RSA已經專利失效,其被廣泛地用於電子商務加密,大家都相信,只要密鑰足夠長,這個演算法就會是安全的。
並查集Union-find
並查集是一種樹型的數據結構,用於處理一些不相交集合(Disjoint Sets)的合並及查詢問題。常常在使用中以森林來表示。
Viterbi algorithm
尋找最可能的隱藏狀態序列(Finding most probable sequence of hidden states)。編輯本段演算法特點1.有窮性。一個演算法應包含有限的操作步驟,而不能是無限的。事實上「有窮性」往往指「在合理的范圍之內」。如果讓計算機執行一個歷時1000年才結束的演算法,這雖然是有窮的,但超過了合理的限度,人們不把他是為有效演算法。 2. 確定性。演算法中的每一個步驟都應當是確定的,而不應當是含糊的、模稜兩可的。演算法中的每一個步驟應當不致被解釋成不同的含義,而應是十分明確的。也就是說,演算法的含義應當是唯一的,而不應當產生「歧義性」。 3. 有零個或多個輸入、所謂輸入是指在執行演算法是需要從外界取得必要的信息。 4. 有一個或多個輸出。演算法的目的是為了求解,沒有輸出的演算法是沒有意義的。 5.有效性。 演算法中的每一個 步驟都應當能有效的執行。並得到確定的結果。編輯本段演算法與程序雖然演算法與計算機程序密切相關,但二者也存在區別:計算機程序是演算法的一個實例,是將演算法通過某種計算機語言表達出來的具體形式;同一個演算法可以用任何一種計算機語言來表達。 演算法列表 圖論 路徑問題 0/1邊權最短路徑 BFS 非負邊權最短路徑(Dijkstra) 可以用Dijkstra解決問題的特徵 負邊權最短路徑 Bellman-Ford Bellman-Ford的Yen-氏優化 差分約束系統 Floyd 廣義路徑問題 傳遞閉包 極小極大距離 / 極大極小距離 Euler Path / Tour 圈套圈演算法 混合圖的 Euler Path / Tour Hamilton Path / Tour 特殊圖的Hamilton Path / Tour 構造 生成樹問題 最小生成樹 第k小生成樹 最優比率生成樹 0/1分數規劃 度限制生成樹 連通性問題 強大的DFS演算法 無向圖連通性 割點 割邊 二連通分支 有向圖連通性 強連通分支 2-SAT 最小點基 有向無環圖 拓撲排序 有向無環圖與動態規劃的關系 二分圖匹配問題 一般圖問題與二分圖問題的轉換思路 最大匹配 有向圖的最小路徑覆蓋 0 / 1矩陣的最小覆蓋 完備匹配 最優匹配 穩定婚姻 網路流問題 網路流模型的簡單特徵和與線性規劃的關系 最大流最小割定理 最大流問題 有上下界的最大流問題 循環流 最小費用最大流 / 最大費用最大流 弦圖的性質和判定 組合數學 解決組合數學問題時常用的思想 逼近 遞推 / 動態規劃 概率問題 Polya定理 計算幾何 / 解析幾何 計算幾何的核心:叉積 / 面積 解析幾何的主力:復數 基本形 點 直線,線段 多邊形 凸多邊形 / 凸包 凸包演算法的引進,卷包裹法 Graham掃描法 水平序的引進,共線凸包的補丁 完美凸包演算法 相關判定 兩直線相交 兩線段相交 點在任意多邊形內的判定 點在凸多邊形內的判定 經典問題 最小外接圓 近似O(n)的最小外接圓演算法 點集直徑 旋轉卡殼,對踵點 多邊形的三角剖分 數學 / 數論 最大公約數 Euclid演算法 擴展的Euclid演算法 同餘方程 / 二元一次不定方程 同餘方程組 線性方程組 高斯消元法 解mod 2域上的線性方程組 整系數方程組的精確解法 矩陣 行列式的計算 利用矩陣乘法快速計算遞推關系 分數 分數樹 連分數逼近 數論計算 求N的約數個數 求phi(N) 求約數和 快速數論變換 …… 素數問題 概率判素演算法 概率因子分解 數據結構 組織結構 二叉堆 左偏樹 二項樹 勝者樹 跳躍表 樣式圖標 斜堆 reap 統計結構 樹狀數組 虛二叉樹 線段樹 矩形面積並 圓形面積並 關系結構 Hash表 並查集 路徑壓縮思想的應用 STL中的數據結構 vector deque set / map 動態規劃 / 記憶化搜索 動態規劃和記憶化搜索在思考方式上的區別 最長子序列系列問題 最長不下降子序列 最長公共子序列 一類NP問題的動態規劃解法 樹型動態規劃 背包問題 動態規劃的優化 四邊形不等式 函數的凸凹性 狀態設計 規劃方向 線性規劃 常用思想 二分 最小表示法 串 KMP Trie結構 後綴樹/後綴數組 LCA/RMQ 有限狀態自動機理論 排序 選擇/冒泡 快速排序 堆排序 歸並排序 基數排序 拓撲排序 排序網路
擴展閱讀:
1
《計算機演算法設計與分析導論》朱清新等編著人民郵電出版社
開放分類:
計算機,演算法
『捌』 人工智慧a星演算法貓捉老鼠實驗代碼
本來就不會動,只能和玩家玩
『玖』 Java 鏈表節點值問題
包com.link;公共類節點 {
/ /前一個節點
私營節點上一頁;/ /後一個節點
私營節點未來;
/ /值
私人的T值;公共節點(){
超();
}公共節點(節點預防和控制,節點接下來,T值){
超();
this.prev =上一頁;
this.next =未來;
THIS.VALUE =值;
}公共節點的GetNext(){
未來的回報;
}公共無效setNext(節點旁邊){
this.next =未來;
}公共節點 getPrev(){
返回上級;
}公共無效setPrev(節點先前){
this.prev =上一頁;
}公共牛逼的getValue(){
返回值;
}公共無效的setValue(T值){
THIS.VALUE =值;
/ /如果有一個節點或下一個節點
公共布爾的hasNext(){
如果(!this.next = NULL)返回true;
返回false;
公共布爾hasPrev(){
如果(this.prev = NULL!)返回true;
返回false;
------------------------------------ ----包com.link;公共類鏈表 {
/ /頭節點
私營節點頭;
/ /構造函數
公眾鏈表(){
頭=新的Node (NULL,NULL,NULL);
公共無效添加(T T){
節點溫度=頭;
而{
溫度= temp.getNext()(溫度的hasNext());
temp.setNext(新節點(溫度,空,T));
私營節點發現(T T){
如果(T == NULL)返回NULL; (!head.hasNext())
如果返回NULL; 節點溫度=頭;
而(temp.hasNext()){
溫度= temp.getNext();
如果(t.equals(temp.getValue())){
返回溫度;
返回NULL;
公共布爾hasValue的(T T){如果(發現(T)=空!)返回true;
返回false;
公共布爾刪除(T T){
節點溫度=發現(T);
如果(temp! = NULL){
temp.getNext()setPrev(temp.getPrev());。
temp.getPrev()。 setNext(temp.getNext());
溫度= NULL;
返回true;
返回false;
/ /取一個節點通過索引
公眾噸得到(INT指數){
如果返回空值(head.hasNext()!);
節點溫度=頭;
INT I = 0;
為(我「=指數&& temp.hasNext(); i + +){
溫度= temp.getNext();
}
如(i ==指數+1)返回temp.getValue();
返回NULL;
}公共靜態無效的主要(字串[] args){
LINKLIST 列表=新LINKLIST ();
為(int i = 0; I <20; i + +){
將對List.Add(「字元串」+ I);
/ /以下只列印顯示的結果,所以一般情況下不會列印
節點溫度= list.head;
INT I = 0;
而(temp.hasNext()){
溫度= temp.getNext();
System.out.println(「值」+ I +「:」+ temp.getValue());
i + +;
如果(list.remove(「String10」)){
System.out.println(「成功」);
}其他{
系統。通過out.println(「否」);
溫度= list.head;
I = 0;
而(temp.hasNext()){
溫度= temp.getNext();
System.out.println(「值」+ I +「:」+ temp.getValue()); i + +;
}