常見的演算法
0) 窮舉法
窮舉法簡單粗暴,沒有什麼問題是搞不定的,只要你肯花時間。同時對於小數據量,窮舉法就是最優秀的演算法。就像太祖長拳,簡單,人人都能會,能解決問題,但是與真正的高手過招,就頹了。
1) 貪婪演算法
貪婪演算法可以獲取到問題的局部最優解,不一定能獲取到全局最優解,同時獲取最優解的好壞要看貪婪策略的選擇。特點就是簡單,能獲取到局部最優解。就像打狗棍法,同一套棍法,洪七公和魯有腳的水平就差太多了,因此同樣是貪婪演算法,不同的貪婪策略會導致得到差異非常大的結果。
2) 動態規劃演算法
當最優化問題具有重復子問題和最優子結構的時候,就是動態規劃出場的時候了。動態規劃演算法的核心就是提供了一個memory來緩存重復子問題的結果,避免了遞歸的過程中的大量的重復計算。動態規劃演算法的難點在於怎麼將問題轉化為能夠利用動態規劃演算法來解決。當重復子問題的數目比較小時,動態規劃的效果也會很差。如果問題存在大量的重復子問題的話,那麼動態規劃對於效率的提高是非常恐怖的。就像斗轉星移武功,對手強它也會比較強,對手若,他也會比較弱。
3)分治演算法
分治演算法的邏輯更簡單了,就是一個詞,分而治之。分治演算法就是把一個大的問題分為若干個子問題,然後在子問題繼續向下分,一直到base cases,通過base cases的解決,一步步向上,最終解決最初的大問題。分治演算法是遞歸的典型應用。
4) 回溯演算法
回溯演算法是深度優先策略的典型應用,回溯演算法就是沿著一條路向下走,如果此路不同了,則回溯到上一個
分岔路,在選一條路走,一直這樣遞歸下去,直到遍歷萬所有的路徑。八皇後問題是回溯演算法的一個經典問題,還有一個經典的應用場景就是迷宮問題。
5) 分支限界演算法
回溯演算法是深度優先,那麼分支限界法就是廣度優先的一個經典的例子。回溯法一般來說是遍歷整個解空間,獲取問題的所有解,而分支限界法則是獲取一個解(一般來說要獲取最優解)。
② 計算機編程常用演算法有哪些
貪心演算法,蟻群演算法,遺傳演算法,進化演算法,基於文化的遺傳演算法,禁忌演算法,蒙特卡洛演算法,混沌隨機演算法,序貫數論演算法,粒子群演算法,模擬退火演算法。
模擬退火+遺傳演算法混合編程例子:
http://..com/question/43266691.html
自適應序貫數論演算法例子:
http://..com/question/60173220.html
③ 常見的分類演算法有哪些
決策樹 貝葉斯 人工神經網路 k-近鄰 支持向量機 基於關聯規則的分類 集成學習
④ 常見的搜索演算法有哪幾種
廣度優先搜索(BFS)
深度優先搜索(DFS)
爬山法(Hill Climbing)
最佳優先演算法(Best-first search strategy)
回溯法 (Backtracking)
分支限界演算法(Branch-and-bound Search Algorithm)
⑤ 常見演算法有哪些
模擬
擬陣
暴力
貪心
二分法
整體二
三分法
一般動規與遞推
斯坦納樹
動態樹分治
2-SAT
並查集
差分約束
最短路
最小割
費用流
最大流
有上下界網路流
虛樹
矩陣樹定理
最小生成樹
點分治
樹鏈剖分
prufer編碼
哈夫曼樹
拉格朗日乘數法
BSGS
博弈論
矩陣乘法
高斯消元
容斥原理
抽屜原理
模線性方程組
莫比烏斯反演
快速傅里葉變換
擴展歐幾里得演算法(
裴蜀定理
dfs序
深度搜索
迭代深搜
廣度搜索
雙向廣搜
啟發式搜索
dancing link
迴文自動機
KMP
字典樹
後綴數組
AC自動機
後綴自動機
manacher
凸包
掃描線
三角剖分
旋轉卡殼
半平面交
cdq分治
莫隊演算法
爬山演算法
分數規劃
模擬退火
朱劉演算法
隨機增量法
倍增演算法
⑥ 常用的演算法有哪些,是怎麼分類的
數據元素相互之間的關系稱為結構。有四類基本結構:集合、線性結構、樹形結構、圖狀結構;
集合結構:除了同屬於一種類型外,別無其它關系
線性結構:元素之間存在一對一關系常見類型有: 數組,鏈表,隊列,棧,它們之間在操作上有所區別.例如:鏈表可在任意位置插入或刪除元素,而隊列在隊尾插入元素,隊頭刪除元素,棧只能在棧頂進行插
入,刪除操作.
樹形結構:元素之間存在一對多關系,常見類型有:樹(有許多特例:二叉樹、平衡二叉樹、查找樹等)
圖形結構:元素之間存在多對多關系,圖形結構中每個結點的前驅結點數和後續結點多個數可以任意
⑦ 最常見的人工智慧演算法都有哪些
神經網路演算法、蟻群演算法、混合蛙跳演算法、蜂群演算法。
⑧ 什麼是演算法,常用的演算法描述有哪些
演算法的描述方式主要有自然語言,流程圖,偽代碼等,它們的優勢和不足可以簡單地歸納如下:1、自然語言優勢:自然語言描述的演算法通俗易懂,不用專門的訓練不足:a.由於自然語言的歧義性,容易導致演算法執行的不確定性.b.自然語言的語句一般較長,導致描述的演算法太長.c.當一個演算法中循環和分歧較多時就很難清晰地表示出來.d.自然語言表示的演算法不便翻譯成計算機程序設計語言.2、流程圖優勢:流程圖描述的演算法清晰簡潔,容易表達選擇結構,它不依賴於任何具體的計算機和計算機程序設計語言,從而有利於不同環境的程序設計.不足:不易書寫,修改起來比較費事,可以藉助於專用的流程圖製作軟體來提升繪制和修改.3、偽代碼優勢:偽代碼迴避了程序設計語言的嚴格、煩瑣的書寫格式,書寫方便,同時具備格式緊湊,易於理解,便於向計算機程序設計語言過渡的優點.不足:由於偽代碼的種類繁多,語句不容易規范,有時會產生誤讀.