當前位置:首頁 » 操作系統 » gaot遺傳演算法工具箱

gaot遺傳演算法工具箱

發布時間: 2022-05-09 02:50:18

『壹』 matlab遺傳演算法工具箱函數的參數問題

這個100在這里是起到限定條件的作用。如果g1>0或者g2>0這種情況,就不進行計算了,直接給出誤差值100,這樣,g1>0或者g2>0這種情況基本上就排除了,因為誤差值非常高。這個數值可以改,改的比較大就可以了。目的是把結果中的g1>0和g2>0情況去掉。
initialPopulation是第一代種群的意思,這個數值就是
遺傳演算法
起點的位置。這個值怎麼取沒有固定的說法,如果你想手動賦值而不是讓計算機自己生成,
那麼你需要創建一個矩陣,行數等於populationSize,就是種群數量,列數等於輸入變數的數量,在你的例子中是2。
初始值的作用很大,越復雜的模型,對於初值的要求就越高。

『貳』 matlab6.5+gaot工具箱和matlab7.0自帶工具箱的效果一樣嗎

matlab7.0自帶的工具箱版本未必都是7.0,我的這台電腦裝的也是6.5,看看它的版本吧。
-------------------------------------------------------------------------------------
MATLAB Version 6.5.0.180913a (R13)
MATLAB License Number: 0
Operating System: Microsoft Windows 98 Version 4.10 (Build 2222: A )
Java VM Version: Java 1.3.1_01 with Sun Microsystems Inc. Java HotSpot(TM) Client VM
-------------------------------------------------------------------------------------
MATLAB Version 6.5 (R13)
Simulink Version 5.0 (R13)
Aerospace Blockset Version 1.0.1 (R13)
CDMA Reference Blockset Version 1.1 (R13)
Communications Blockset Version 2.5 (R13)
Communications Toolbox Version 2.1 (R13)
Control System Toolbox Version 5.2 (R13)
Curve Fitting Toolbox Version 1.1 (R13)
DSP Blockset Version 5.0 (R13)
Data Acquisition Toolbox Version 2.2 (R13)
Database Toolbox Version 2.2.1 (R13)
Datafeed Toolbox Version 1.3.1 (R13)
Dials & Gauges Blockset Version 1.1.2 (R13)
Embedded Target for Motorola MPC555 Version 1.0.1 (R13)
Embedded Target for Texas Instrumen... Version 1.0 (R13)
Excel Link Version 2.0 (R13)
Filter Design Toolbox Version 2.2 (R13)
Financial Derivatives Toolbox Version 2.0 (R13)
Financial Time Series Toolbox Version 2.0 (R13)
Financial Toolbox Version 2.2.1 (R13)
Fixed-Point Blockset Version 4.0 (R13)
Fuzzy Logic Toolbox Version 2.1.2 (R13)
GARCH Toolbox Version 1.0.2 (R13)
Image Processing Toolbox Version 3.2 (R13)
Instrument Control Toolbox Version 1.2 (R13)
LMI Control Toolbox Version 1.0.8 (R13)
MATLAB COM Builder Version 1.0 (R13)
MATLAB Compiler Version 3.0 (R13)
MATLAB Excel Builder Version 1.1 (R13)
MATLAB Link for Code Composer Studi... Version 1.0 (R13)
MATLAB Report Generator Version 1.3 (R13)
MATLAB Runtime Server Development Kit Version 6.1.1 (R13)
Mapping Toolbox Version 1.3 (R13)
Model Predictive Control Toolbox Version 1.0.7 (R13)
Model-Based Calibration Toolbox Version 1.1 (R13)
Mu-Analysis and Synthesis Toolbox Version 3.0.7 (R13)
Neural Network Toolbox Version 4.0.2 (R13)
Nonlinear Control Design Blockset Version 1.1.6 (R13)
Optimization Toolbox Version 2.2 (R13)
Partial Differential Equation Toolbox Version 1.0.4 (R13)
Real-Time Windows Target Version 2.2 (R13)
Real-Time Workshop Version 5.0 (R13)
Real-Time Workshop Embedded Coder Version 3.0 (R13)
Requirements Management Interface Version 1.0.4 (R13)
Robust Control Toolbox Version 2.0.9 (R13)
SB2SL (converts SystemBuild to Simu... Version 2.5 (R13)
Signal Processing Toolbox Version 6.0 (R13)
SimMechanics Version 1.1 (R13)
SimPowerSystems Version 2.3 (R13)
Simulink Performance Tools Version 1.2 (R13)
Simulink Report Generator Version 1.3 (R13)
Spline Toolbox Version 3.1.1 (R13)
Stateflow Version 5.0 (R13)
Stateflow Coder Version 5.0 (R13)
Statistics Toolbox Version 4.0 (R13)
Symbolic Math Toolbox Version 2.1.3 (R13)
System Identification Toolbox Version 5.0.2 (R13)
Virtual Reality Toolbox Version 3.0 (R13)
Wavelet Toolbox Version 2.2 (R13)
xPC Target Version 2.0 (R13)
xPC Target Embedded Option Version 2.0 (R13)

所以,不要迷信新版本,夠用就行。
以下是2006b版本的。
>> ver
-------------------------------------------------------------------------------------
MATLAB Version 7.3.0.267 (R2006b)
MATLAB License Number: 32684
Operating System: Microsoft Windows XP Version 5.1 (Build 2600: Service Pack 2)
Java VM Version: Java 1.5.0 with Sun Microsystems Inc. Java HotSpot(TM) Client VM mixed mode
-------------------------------------------------------------------------------------
MATLAB Version 7.3 (R2006b)
Simulink Version 6.5 (R2006b)
Aerospace Blockset Version 2.2 (R2006b)
Aerospace Toolbox Version 1.0 (R2006b)
Bioinformatics Toolbox Version 2.4 (R2006b)
Communications Blockset Version 3.4 (R2006b)
Communications Toolbox Version 3.4 (R2006b)
Control System Toolbox Version 7.1 (R2006b)
Curve Fitting Toolbox Version 1.1.6 (R2006b)
Data Acquisition Toolbox Version 2.9 (R2006b)
Database Toolbox Version 3.2 (R2006b)
Datafeed Toolbox Version 1.9 (R2006b)
Distributed Computing Toolbox Version 3.0 (R2006b)
Embedded Target for Infineon C166 Microcontrollers Version 1.3 (R2006b)
Embedded Target for Motorola HC12 Version 1.1.5 (R2006b)
Embedded Target for Motorola MPC555 Version 2.0.5 (R2006b)
Embedded Target for TI C2000 DSP(tm) Version 2.1 (R2006b)
Embedded Target for TI C6000 DSP(tm) Version 3.1 (R2006b)
Excel Link Version 2.4 (R2006b)
Extended Symbolic Math Toolbox Version 3.1.5 (R2006b)
Filter Design HDL Coder Version 1.5 (R2006b)
Filter Design Toolbox Version 4.0 (R2006b)
Financial Derivatives Toolbox Version 4.1 (R2006b)
Financial Toolbox Version 3.1 (R2006b)
Fixed-Income Toolbox Version 1.2 (R2006b)
Fixed-Point Toolbox Version 1.5 (R2006b)
Fuzzy Logic Toolbox Version 2.2.4 (R2006b)
GARCH Toolbox Version 2.3 (R2006b)
Gauges Blockset Version 2.0.4 (R2006b)
Genetic Algorithm and Direct Search Toolbox Version 2.0.2 (R2006b)
Image Acquisition Toolbox Version 2.0 (R2006b)
Image Processing Toolbox Version 5.3 (R2006b)
Instrument Control Toolbox Version 2.4.1 (R2006b)
Link for Code Composer Studio Version 2.1 (R2006b)
Link for ModelSim Version 2.1 (R2006b)
Link for TASKING Version 1.0.1 (R2006b)
MATLAB Builder for .NET Version 2.1 (R2006b)
MATLAB Builder for Excel Version 1.2.7 (R2006b)
MATLAB Builder for Java Version 1.0 (R2006b)
MATLAB Compiler Version 4.5 (R2006b)
MATLAB Distributed Computing Engine Version 3.0 (R2006b)
MATLAB Report Generator Version 3.1 (R2006b)
Mapping Toolbox Version 2.4 (R2006b)
Model Predictive Control Toolbox Version 2.2.3 (R2006b)
Model-Based Calibration Toolbox Version 3.1 (R2006b)
Neural Network Toolbox Version 5.0.1 (R2006b)
OPC Toolbox Version 2.0.3 (R2006b)
Optimization Toolbox Version 3.1 (R2006b)
Partial Differential Equation Toolbox Version 1.0.9 (R2006b)
RF Blockset Version 1.3.1 (R2006b)
RF Toolbox Version 2.0 (R2006b)
Real-Time Windows Target Version 2.6.2 (R2006b)
Real-Time Workshop Version 6.5 (R2006b)
Real-Time Workshop Embedded Coder Version 4.5 (R2006b)
Robust Control Toolbox Version 3.1.1 (R2006b)
Signal Processing Blockset Version 6.4 (R2006b)
Signal Processing Toolbox Version 6.6 (R2006b)
SimBiology Version 2.0.1 (R2006b)
SimDriveline Version 1.2.1 (R2006b)
SimEvents Version 1.2 (R2006b)
SimHydraulics Version 1.1 (R2006b)
SimMechanics Version 2.5 (R2006b)
SimPowerSystems Version 4.3 (R2006b)
Simulink Accelerator Version 6.5 (R2006b)
Simulink Control Design Version 2.0.1 (R2006b)
Simulink Fixed Point Version 5.3 (R2006b)
Simulink HDL Coder Version 1.0 (R2006b)
Simulink Parameter Estimation Version 1.1.4 (R2006b)
Simulink Report Generator Version 3.1 (R2006b)
Simulink Response Optimization Version 3.1 (R2006b)
Simulink Verification and Validation Version 2.0 (R2006b)
Spline Toolbox Version 3.3.1 (R2006b)
Stateflow Version 6.5 (R2006b)
Stateflow Coder Version 6.5 (R2006b)
Statistics Toolbox Version 5.3 (R2006b)
Symbolic Math Toolbox Version 3.1.5 (R2006b)
System Identification Toolbox Version 6.2 (R2006b)
SystemTest Version 1.0.1 (R2006b)
Video and Image Processing Blockset Version 2.2 (R2006b)
Virtual Reality Toolbox Version 4.4 (R2006b)
Wavelet Toolbox Version 3.1 (R2006b)
xPC Target Version 3.1 (R2006b)
xPC Target Embedded Option Version 3.1 (R2006b)

Trademarks
------------------
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC
TargetBox are registered trademarks of The MathWorks, Inc. Other proct or
brand names are trademarks or registered trademarks of their respective holders.

可以看出,有些是升級的,有些還是以前版本的。

『叄』 Matlab中關於遺傳演算法調用gaot工具時如何配置(添加)該工具箱

網路裡面有,剛才我用起了http://wenku..com/view/a18b6c15b7360b4c2e3f648c.html 希望能起作用

『肆』 遺傳演算法工具箱是什麼

遺傳工具箱是MATLAB中的一個工具,主要是用來求解優化問題的

『伍』 遺傳演算法工具箱的具體使用

matlab遺傳演算法工具箱函數及實例講解 核心函數:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始種群的生成函數
【輸出參數】
pop--生成的初始種群
【輸入參數】
num--種群中的個體數目
bounds--代表變數的上下界的矩陣
eevalFN--適應度函數
eevalOps--傳遞給適應度函數的參數
options--選擇編碼形式(浮點編碼或是二進制編碼)[precision F_or_B],如
precision--變數進行二進制編碼時指定的精度
F_or_B--為1時選擇浮點編碼,否則為二進制編碼,由precision指定精度)
(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遺傳演算法函數
【輸出參數】
x--求得的最優解
endPop--最終得到的種群
bPop--最優種群的一個搜索軌跡
【輸入參數】
bounds--代表變數上下界的矩陣
evalFN--適應度函數
evalOps--傳遞給適應度函數的參數
startPop-初始種群
opts[epsilon prob_ops display]--opts(1:2)等同於initializega的options參數,第三個參數控制是否輸出,一般為0。如[1e-6 1 0]
termFN--終止函數的名稱,如['maxGenTerm']
termOps--傳遞個終止函數的參數,如[100]
selectFN--選擇函數的名稱,如['normGeomSelect']
selectOps--傳遞個選擇函數的參數,如[0.08]
xOverFNs--交叉函數名稱表,以空格分開,如['arithXover heuristicXover simpleXover']
xOverOps--傳遞給交叉函數的參數表,如[2 0;2 3;2 0]
mutFNs--變異函數表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--傳遞給交叉函數的參數表,如[4 0 0;6 100 3;4 100 3;4 0 0]
【問題】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代
運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)
註:遺傳演算法一般用來取得近似最優解,而不是最優解。
遺傳演算法實例2
【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])

『陸』 怎麼調用matlab遺傳演算法工具箱啊

直接在命令窗口裡邊輸入gatool就行了,用遺傳演算法還可以使用ga函數,具體使用格式可以在help系統里看ga,你還可以按照如下步驟打開遺傳演算法工具箱:1,打開matlab,2點擊左下方的start按鈕
3,點toolboxes,打開後選擇genetic
algorithm
and
direct
search
然後就可以進入gatool了,然後就會彈出ga工具箱(註:我的版本是7.7的,不同版本可能不同),希望對你有用哈!

熱點內容
系數參數配置什麼意思 發布:2025-01-17 00:34:03 瀏覽:755
台灣免費伺服器雲主機 發布:2025-01-17 00:29:07 瀏覽:870
c語言sizeofchar 發布:2025-01-17 00:29:01 瀏覽:469
安卓手機的雲備份在哪裡能找到 發布:2025-01-17 00:14:12 瀏覽:472
詐騙的腳本 發布:2025-01-16 23:51:27 瀏覽:315
電腦配置有點低怎麼玩和平精英 發布:2025-01-16 23:46:14 瀏覽:819
ipfs分布式伺服器是什麼幣種 發布:2025-01-16 23:32:29 瀏覽:992
android動態icon 發布:2025-01-16 23:03:12 瀏覽:605
優酷電腦緩存在哪 發布:2025-01-16 22:58:29 瀏覽:298
進口途銳哪個配置好 發布:2025-01-16 22:35:24 瀏覽:962