蟻群演算法程序
『壹』 求帶注釋的蟻群演算法
Sorry,沒有注釋!
放不下,網站上有!
下面就是實現如此復雜性的七條簡單規則:
1、范圍:
螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是33個方格世界,並且能移動的距離也在這個范圍之內。
2、環境:
螞蟻所在的環境是一個虛擬的世界,其中有障礙物,有別的螞蟻,還有信息素,信息素有兩種,一種是找到食物的螞蟻灑下的食物信息素,一種是找到窩的螞蟻灑下的窩的信息素。每個螞蟻都僅僅能感知它范圍內的環境信息。環境以一定的速率讓信息素消失。
3、覓食規則:
在每隻螞蟻能感知的范圍內尋找是否有食物,如果有就直接過去。否則看是否有信息素,並且比較在能感知的范圍內哪一點的信息素最多,這樣,它就朝信息素多的地方走,並且每隻螞蟻多會以小概率犯錯誤,從而並不是往信息素最多的點移動。螞蟻找窩的規則和上面一樣,只不過它對窩的信息素做出反應,而對食物信息素沒反應。
4、移動規則:
每隻螞蟻都朝向信息素最多的方向移,並且,當周圍沒有信息素指引的時候,螞蟻會按照自己原來運動的方向慣性的運動下去,並且,在運動的方向有一個隨機的小的擾動。為了防止螞蟻原地轉圈,它會記住最近剛走過了哪些點,如果發現要走的下一點已經在最近走過了,它就會盡量避開。
5、避障規則:
如果螞蟻要移動的方向有障礙物擋住,它會隨機的選擇另一個方向,並且有信息素指引的話,它會按照覓食的規則行為。
7、播撒信息素規則:
每隻螞蟻在剛找到食物或者窩的時候撒發的信息素最多,並隨著它走遠的距離,播撒的信息素越來越少。
下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩。
其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了。
參數說明:
最大信息素:螞蟻在一開始擁有的信息素總量,越大表示程序在較長一段時間能夠存在信息素。信息素消減的速度:隨著時間的流逝,已經存在於世界上的信息素會消減,這個數值越大,那麼消減的越快。
錯誤概率表示這個螞蟻不往信息素最大的區域走的概率,越大則表示這個螞蟻越有創新性。
速度半徑表示螞蟻一次能走的最大長度,也表示這個螞蟻的感知范圍。
記憶能力表示螞蟻能記住多少個剛剛走過點的坐標,這個值避免了螞蟻在本地打轉,停滯不前。而這個值越大那麼整個系統運行速度就慢,越小則螞蟻越容易原地轉圈。
源代碼如下:
ant.c
#define SPACE 0×20
#define ESC 0×1b
#define ANT_CHAR_EMPTY 『+』
#define ANT_CHAR_FOOD 153
#define HOME_CHAR 『H』
#define FOOD_CHAR 『F』
#define FOOD_CHAR2 『f』
#define FOOD_HOME_COLOR 12
#define BLOCK_CHAR 177
#define MAX_ANT 50
#define INI_SPEED 3
#define MAXX 80
#define MAXY 23
#define MAX_FOOD 10000
#define TARGET_FOOD 200
#define MAX_SMELL 5000
#define SMELL_DROP_RATE 0.05
#define ANT_ERROR_RATE 0.02
#define ANT_EYESHOT 3
#define SMELL_GONE_SPEED 50
#define SMELL_GONE_RATE 0.05
#define TRACE_REMEMBER 50
#define MAX_BLOCK 100
#define NULL 0
#define UP 1
#define DOWN 2
#define LEFT 3
#define RIGHT 4
#define SMELL_TYPE_FOOD 0
#define SMELL_TYPE_HOME 1
#include 「stdio.h」
#include 「conio.h」
#include 「dos.h」
#include 「stdlib.h」
#include 「dos.h」
#include 「process.h」
#include 「ctype.h」
#include 「math.h」
void WorldInitial(void);
void BlockInitial(void);
void CreatBlock(void);
void SaveBlock(void);
void LoadBlock(void);
void HomeFoodInitial(void);
void AntInitial(void);
void WorldChange(void);
void AntMove(void);
void AntOneStep(void);
void DealKey(char key);
void ClearSmellDisp(void);
void DispSmell(int type);
int AntNextDir(int xxx,int yyy,int ddir);
int GetMaxSmell(int type,int xxx,int yyy,int ddir);
int IsTrace(int xxx,int yyy);
int MaxLocation(int num1,int num2,int num3);
int CanGo(int xxx,int yyy,int ddir);
int JudgeCanGo(int xxx,int yyy);
int TurnLeft(int ddir);
int TurnRight(int ddir);
int TurnBack(int ddir);
int MainTimer(void);
char WaitForKey(int secnum);
void DispPlayTime(void);
int TimeUse(void);
void HideCur(void);
void ResetCur(void);
—————
struct HomeStruct
{
int xxx,yyy;
int amount;
int TargetFood;
}home;
struct FoodStruct
{
int xxx,yyy;
int amount;
}food;
struct AntStruct
{
int xxx,yyy;
int dir;
int speed;
int SpeedTimer;
int food;
int SmellAmount[2];
int tracex[TRACE_REMEMBER];
int tracey[TRACE_REMEMBER];
int TracePtr;
int IQ;
}ant[MAX_ANT];
int AntNow;
int timer10ms;
struct time starttime,endtime;
int Smell[2][MAXX+1][MAXY+1];
int block[MAXX+1][MAXY+1];
int SmellGoneTimer;
int SmellDispFlag;
int CanFindFood;
int HardtoFindPath;
—– Main ——–
void main(void)
{
char KeyPress;
int tu;
clrscr();
HideCur();
WorldInitial();
do
{
timer10ms = MainTimer();
if(timer10ms) AntMove();
if(timer10ms) WorldChange();
tu = TimeUse();
if(tu=60&&!CanFindFood)
{
gotoxy(1,MAXY+1);
printf(「Can not find food, maybe a block world.」);
WaitForKey(10);
WorldInitial();
}
if(tu=180&&home.amount100&&!HardtoFindPath)
{
gotoxy(1,MAXY+1);
printf(「God! it is so difficult to find a path.」);
if(WaitForKey(10)==0×0d) WorldInitial();
else
{
HardtoFindPath = 1;
gotoxy(1,MAXY+1);
printf(」 「);
}
}
if(home.amount=home.TargetFood)
{
gettime(&endtime);
KeyPress = WaitForKey(60);
DispPlayTime();
WaitForKey(10);
WorldInitial();
}
else if(kbhit())
{
KeyPress = getch();
DealKey(KeyPress);
}
else KeyPress = NULL;
}
while(KeyPress!=ESC);
gettime(&endtime);
DispPlayTime();
WaitForKey(10);
clrscr();
ResetCur();
}
『貳』 蟻群演算法是什麼
蟻群演算法,又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。 它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質。針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。
原理
設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼地編程,因為程序的錯誤也許會讓你前功盡棄。這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序。
然而,事實並沒有你想得那麼復雜,上面這個程序每個螞蟻的核心程序編碼不過100多行!為什麼這么簡單的程序會讓螞蟻干這樣復雜的事情?答案是:簡單規則的涌現。事實上,每隻螞蟻並不是像我們想像的需要知道整個世界的信息,他們其實只關心很小范圍內的眼前信息,而且根據這些局部信息利用幾條簡單的規則進行決策,這樣,在蟻群這個集體里,復雜性的行為就會凸現出來。這就是人工生命、復雜性科學解釋的規律!那麼,這些簡單規則是什麼呢?
『叄』 蟻群演算法 螞蟻的初始分布位置和最終分布位置由什麼決定
概念:蟻群演算法(antcolonyoptimization,ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法.它由MarcoDorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為.蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值其原理:為什麼小小的螞蟻能夠找到食物?他們具有智能么?設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼的編程,因為程序的錯誤也許會讓你前功盡棄.這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序應用范圍:螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內引申:跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點:1、多樣性2、正反饋多樣性保證了螞蟻在覓食的時候不置走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來.我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力.正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了.引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合.如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水.這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整.既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化.而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合.而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了!蟻群演算法的實現下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩.其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了.
『肆』 求Pareto蟻群演算法的源代碼 java的
說明:信息素權重,路徑權重和信息素蒸發率對最後的結果影響很大,需要微調。
目前發現2 / 5 / 0.5 能達到稍微讓人滿意的效果。本程序離完美的ACO還差很遠,僅供參考。
本蟻群演算法為AS演算法。
用法:
1.new一個對象
ACOforTSP tsp = new ACPforTSP(tsp數據文件名,迭代次數,螞蟻數量,信息素權重,路徑權重,信息素蒸發率);
2.用go()方法運行
tsp.go();
ACOforTSP.java
___________________________________________________________________
import java.io.File;
import static java.lang.Math.pow;
import static java.lang.Math.sqrt;
import static java.lang.Math.random;
import java.util.HashMap;
import java.io.FileReader;
import java.io.BufferedReader;
/**
*
* @author dvdface
*/
public class ACOforTSP {
//城市的距離表
private double[][] distance;
//距離的倒數表
private double[][] heuristic;
//啟發信息表
private double[][] pheromone;
//權重
private int alpha, beta;
//迭代的次數
private int iterationTimes;
//螞蟻的數量
private int numbersOfAnt;
//蒸發率
private double rate;
ACOforTSP (String file, int iterationTimes, int numbersOfAnt, int alpha, int beta, double rate) {
//載入文件
this.initializeData(file);
//初始化參數
this.iterationTimes = iterationTimes;
//設置螞蟻數量
this.numbersOfAnt = numbersOfAnt;
//設置權重
this.alpha = alpha;
this.beta = beta;
//設置蒸發率
this.rate = rate;
}
private void initializeData(String filename) {
//定義內部類
class City {
int no;
double x;
double y;
City(int no, double x, double y) {
this.no = no;
this.x = x;
this.y = y;
}
private double getDistance(City city) {
return sqrt(pow((x - city.x), 2) + pow((y - city.y), 2));
}
}
try {
//定義HashMap保存讀取的坐標信息
HashMap<Integer, City> map = new HashMap<Integer, City>();
//讀取文件
BufferedReader reader = new BufferedReader(new FileReader(new File(filename)));
for (String str = reader.readLine(); str != null; str = reader.readLine()) {
//將讀到的信息保存入HashMap
if (str.matches("([0-9]+)(\\s*)([0-9]+)(.?)([0-9]*)(\\s*)([0-9]+)(.?)([0-9]*)")) {
String[] data = str.split("(\\s+)");
City city = new City(Integer.parseInt(data[0]),
Double.parseDouble(data[1]),
Double.parseDouble(data[2]));
map.put(city.no, city);
}
}
//分配距離矩陣存儲空間
distance = new double[map.size() + 1][map.size() + 1];
//分配距離倒數矩陣存儲空間
heuristic = new double[map.size() + 1][map.size() + 1];
//分配信息素矩陣存儲空間
pheromone = new double[map.size() + 1][map.size() + 1];
for (int i = 1; i < map.size() + 1; i++) {
for (int j = 1; j < map.size() + 1; j++) {
//計算城市間的距離,並存入距離矩陣
distance[i][j] = map.get(i).getDistance(map.get(j));
//計算距離倒數,並存入距離倒數矩陣
heuristic[i][j] = 1 / distance[i][j];
//初始化信息素矩陣
pheromone[i][j] = 1;
}
}
} catch (Exception exception) {
System.out.println("初始化數據失敗!");
}
}
class Ant {
//已訪問城市列表
private boolean[] visited;
//訪問順序表
private int[] tour;
//已訪問城市的個數
private int n;
//總的距離
private double total;
Ant() {
//給訪問順序表分配空間
tour = new int[distance.length+1];
//已存入城市數量為n,剛開始為0
n = 0;
//將起始城市1,放入訪問結點順序表第一項
tour[++n] = 1;
//給已訪問城市結點分配空間
visited = new boolean[distance.length];
//第一個城市為出發城市,設置為已訪問
visited[tour[n]] = true;
}
private int chooseCity() {
//用來random的隨機數
double m = 0;
//獲得當前所在的城市號放入j,如果和j相鄰的城市沒有被訪問,那麼加入m
for (int i = 1, j = tour[n]; i < pheromone.length; i++) {
if (!visited[i]) {
m += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);
}
}
//保存隨機到的數
double p = m * random();
//尋找被隨機到的城市
double k = 0;
//保存找到的城市
int q = 0;
for (int i = 1, j = tour[n]; k < p; i++) {
if (!visited[i]) {
k += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);
q = i;
}
}
return q;
}
private void constructSolution () {
while (n != (distance.length-1) ) {
//選取下一個城市
int p = chooseCity();
//計算總的距離
total += distance[tour[n]][p];
//將選取到的城市放入已訪問列表
tour[++n] = p;
//將選取到的城市標記為已訪問
visited[p] = true;
}
//回到起點
total += distance[tour[1]][tour[n]];
//將起點加入訪問順序表的最後
tour[++n] = tour[1];
}
private void releasePheromone() {
//釋放信息素的大小
double t = 1/total;
//釋放信息素
for (int i=1;i<tour.length-1;i++) {
pheromone[tour[i]][tour[i+1]] += t;
pheromone[tour[i+1]][tour[i]] += t;
}
}
}
public void go() {
//保存最好的路徑和路徑長度
double bestTotal = Double.MAX_VALUE;
int[] bestTour = new int[distance.length+1];
//新建螞蟻數組,用來引用所創建的螞蟻
Ant[] ant = new Ant[numbersOfAnt];
//進行iterationTimes次迭代
while (iterationTimes != 0) {
//初始化新的一批螞蟻(這里用構造新的螞蟻代替重置螞蟻狀態)
for (int i=0; i<numbersOfAnt; i++) {
ant[i] = new Ant();
}
//進行一次迭代(即讓所有的螞蟻構建一條路徑)
for (int i=0; i<numbersOfAnt; i++) {
ant[i].constructSolution();
//如果螞蟻構建的路徑長度比上次最好的還好,那麼保存這個長度和它所走的路徑
if (ant[i].total<bestTotal) {
bestTotal = ant[i].total;
System.array(ant[i].tour, 1, bestTour, 1, bestTour.length-1);
}
}
//蒸發信息素
evaporatePheromone();
//釋放信息素
for (int i=0; i<numbersOfAnt; i++) {
ant[i].releasePheromone();
}
//報告本次迭代的信息
System.out.format("本次為倒數第%d次迭代,當前最優路徑長度為%10.2f\n",iterationTimes,bestTotal);
//迭代總數減去1,進行下次迭代
iterationTimes--;
}
//輸出最好的路徑長度
System.out.format("得到的最優的路徑長度為:%10.2f\n",bestTotal);
//輸出最好的路徑
System.out.println("最優路徑如下:");
for (int i=1; i<bestTour.length; i++) {
System.out.print("→"+bestTour[i]);
}
}
private void evaporatePheromone() {
for (int i = 1; i < pheromone.length; i++)
for (int j = 1; j < pheromone.length; j++) {
pheromone[i][j] *= 1-rate;
}
}
}
『伍』 蟻群演算法求解TSP問題的源程序及簡要說明
簡單蟻群演算法求解TSP的源程序(我幫你找的)
蟻群演算法是新興的仿生演算法,最初是由義大利學者Dorigo M於1991年首次提出,由於具有較強的魯棒性,優良的分布式計算機制和易於與其它方法結合等優點,成為人工智慧領域的一個研究熱點。本程序是實現簡單的蟻群演算法,TSP問題取的是att48,可從http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95獲取,程序運行時間可能會比較長,在我的這台CPU 1.6G+內存256M的機器上運行時間大概是13分鍾左右。我用的語言是MATLAB 7.1。此程序僅供學習所用,如有問題請反饋。謝謝。(註:程序沒有計算最後一個城市回來起點城市的距離)
function [y,val]=QACS
tic
load att48 att48;
MAXIT=300; % 最大循環次數
NC=48; % 城市個數
tao=ones(48,48);% 初始時刻各邊上的信息最為1
rho=0.2; % 揮發系數
alpha=1;
beta=2;
Q=100;
mant=20; % 螞蟻數量
iter=0; % 記錄迭代次數
for i=1:NC % 計算各城市間的距離
for j=1:NC
distance(i,j)=sqrt((att48(i,2)-att48(j,2))^2+(att48(i,3)-att48(j,3))^2);
end
end
bestroute=zeros(1,48); % 用來記錄最優路徑
routelength=inf; % 用來記錄當前找到的最優路徑長度
% for i=1:mant % 確定各螞蟻初始的位置
% end
for ite=1:MAXIT
for ka=1:mant %考查第K只螞蟻
deltatao=zeros(48,48); % 第K只螞蟻移動前各邊上的信息增量為零
[routek,lengthk]=travel(distance,tao,alpha,beta);
if lengthk<routelength % 找到一條更好的路徑
routelength=lengthk;
bestroute=routek;
end
for i=1:NC-1 % 第K只螞蟻在路徑上釋放的信息量
deltatao(routek(i),routek(i+1))=deltatao(routek(i),routek(i+1))+Q/lengthk;
end
deltatao(routek(48),1)=deltatao(routek(48),1)+Q/lengthk;
end
for i=1:NC-1
for j=i+1:NC
if deltatao(i,j)==0
deltatao(i,j)=deltatao(j,i);
end
end
end
tao=(1-rho).*tao+deltatao;
end
y=bestroute;
val=routelength;
toc
function [y,val]=travel(distance,tao,alpha,beta) % 某隻螞蟻找到的某條路徑
[m,n]=size(distance);
p=fix(m*rand)+1;
val=0; % 初始路徑長度設為 0
tabuk=[p]; % 假設該螞蟻都是從第 p 個城市出發的
for i=1:m-1
np=tabuk(length(tabuk)); % 螞蟻當前所在的城市號
p_sum=0;
for j=1:m
if isin(j,tabuk)
continue;
else
ada=1/distance(np,j);
p_sum=p_sum+tao(np,j)^alpha*ada^beta;
end
end
cp=zeros(1,m); % 轉移概率
for j=1:m
if isin(j,tabuk)
continue;
else
ada=1/distance(np,j);
cp(j)=tao(np,j)^alpha*ada^beta/p_sum;
end
end
NextCity=pchoice(cp);
tabuk=[tabuk,NextCity];
val=val+distance(np,NextCity);
end
y=tabuk;
function y=isin(x,A) % 判斷數 x 是否在向量 A 中,如在返回 1 ,否則返回 0
y=0;
for i=1:length(A)
if A(i)==x
y=1;
break;
end
end
function y=pchoice(A)
a=rand;
tempA=zeros(1,length(A)+1);
for i=1:length(A)
tempA(i+1)=tempA(i)+A(i);
end
for i=2:length(tempA)
if a<=tempA(i)
y=i-1;
break;
end
end
『陸』 蟻群演算法程序模塊講解
蟻群演算法《智能演算法30例》上面有講解的吧
『柒』 什麼是蟻群演算法
蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型技術。它由Marco Dorigo於1992年在他的博士論文中引入,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。
蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值.
蟻群演算法是一種求解組合最優化問題的新型通用啟發式方法,該方法具有正反饋、分布式計算和富於建設性的貪婪啟發式搜索的特點。通過建立適當的數學模型,基於故障過電流的配電網故障定位變為一種非線性全局尋優問題。由柳洪平創建。
預期的結果:
各個螞蟻在沒有事先告訴他們食物在什麼地方的前提下開始尋找食物。當一隻找到食物以後,它會向環境釋放一種信息素,吸引其他的螞蟻過來,這樣越來越多的螞蟻會找到食物!有些螞蟻並沒有象其它螞蟻一樣總重復同樣的路,他們會另闢蹊徑,如果令開辟的道路比原來的其他道路更短,那麼,漸漸,更多的螞蟻被吸引到這條較短的路上來。最後,經過一段時間運行,可能會出現一條最短的路徑被大多數螞蟻重復著。
原理:
為什麼小小的螞蟻能夠找到食物?他們具有智能么?設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼的編程,因為程序的錯誤也許會讓你前功盡棄。這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序。
然而,事實並沒有你想得那麼復雜,上面這個程序每個螞蟻的核心程序編碼不過100多行!為什麼這么簡單的程序會讓螞蟻干這樣復雜的事情?答案是:簡單規則的涌現。事實上,每隻螞蟻並不是像我們想像的需要知道整個世界的信息,他們其實只關心很小范圍內的眼前信息,而且根據這些局部信息利用幾條簡單的規則進行決策,這樣,在蟻群這個集體里,復雜性的行為就會凸現出來。這就是人工生命、復雜性科學解釋的規律!那麼,這些簡單規則是什麼呢?下面詳細說明:
1、范圍:
螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內。
2、環境:
螞蟻所在的環境是一個虛擬的世界,其中有障礙物,有別的螞蟻,還有信息素,信息素有兩種,一種是找到食物的螞蟻灑下的食物信息素,一種是找到窩的螞蟻灑下的窩的信息素。每個螞蟻都僅僅能感知它范圍內的環境信息。環境以一定的速率讓信息素消失。
3、覓食規則:
在每隻螞蟻能感知的范圍內尋找是否有食物,如果有就直接過去。否則看是否有信息素,並且比較在能感知的范圍內哪一點的信息素最多,這樣,它就朝信息素多的地方走,並且每隻螞蟻多會以小概率犯錯誤,從而並不是往信息素最多的點移動。螞蟻找窩的規則和上面一樣,只不過它對窩的信息素做出反應,而對食物信息素沒反應。
4、移動規則:
每隻螞蟻都朝向信息素最多的方向移,並且,當周圍沒有信息素指引的時候,螞蟻會按照自己原來運動的方向慣性的運動下去,並且,在運動的方向有一個隨機的小的擾動。為了防止螞蟻原地轉圈,它會記住最近剛走過了哪些點,如果發現要走的下一點已經在最近走過了,它就會盡量避開。
5、避障規則:
如果螞蟻要移動的方向有障礙物擋住,它會隨機的選擇另一個方向,並且有信息素指引的話,它會按照覓食的規則行為。
7、播撒信息素規則:
每隻螞蟻在剛找到食物或者窩的時候撒發的信息素最多,並隨著它走遠的距離,播撒的信息素越來越少。
根據這幾條規則,螞蟻之間並沒有直接的關系,但是每隻螞蟻都和環境發生交互,而通過信息素這個紐帶,實際上把各個螞蟻之間關聯起來了。比如,當一隻螞蟻找到了食物,它並沒有直接告訴其它螞蟻這兒有食物,而是向環境播撒信息素,當其它的螞蟻經過它附近的時候,就會感覺到信息素的存在,進而根據信息素的指引找到了食物。
問題:
說了這么多,螞蟻究竟是怎麼找到食物的呢?
在沒有螞蟻找到食物的時候,環境沒有有用的信息素,那麼螞蟻為什麼會相對有效的找到食物呢?這要歸功於螞蟻的移動規則,尤其是在沒有信息素時候的移動規則。首先,它要能盡量保持某種慣性,這樣使得螞蟻盡量向前方移動(開始,這個前方是隨機固定的一個方向),而不是原地無謂的打轉或者震動;其次,螞蟻要有一定的隨機性,雖然有了固定的方向,但它也不能像粒子一樣直線運動下去,而是有一個隨機的干擾。這樣就使得螞蟻運動起來具有了一定的目的性,盡量保持原來的方向,但又有新的試探,尤其當碰到障礙物的時候它會立即改變方向,這可以看成一種選擇的過程,也就是環境的障礙物讓螞蟻的某個方向正確,而其他方向則不對。這就解釋了為什麼單個螞蟻在復雜的諸如迷宮的地圖中仍然能找到隱蔽得很好的食物。
當然,在有一隻螞蟻找到了食物的時候,其他螞蟻會沿著信息素很快找到食物的。
螞蟻如何找到最短路徑的?這一是要歸功於信息素,另外要歸功於環境,具體說是計算機時鍾。信息素多的地方顯然經過這里的螞蟻會多,因而會有更多的螞蟻聚集過來。假設有兩條路從窩通向食物,開始的時候,走這兩條路的螞蟻數量同樣多(或者較長的路上螞蟻多,這也無關緊要)。當螞蟻沿著一條路到達終點以後會馬上返回來,這樣,短的路螞蟻來回一次的時間就短,這也意味著重復的頻率就快,因而在單位時間里走過的螞蟻數目就多,灑下的信息素自然也會多,自然會有更多的螞蟻被吸引過來,從而灑下更多的信息素……;而長的路正相反,因此,越來越多地螞蟻聚集到較短的路徑上來,最短的路徑就近似找到了。也許有人會問局部最短路徑和全局最短路的問題,實際上螞蟻逐漸接近全局最短路的,為什麼呢?這源於螞蟻會犯錯誤,也就是它會按照一定的概率不往信息素高的地方走而另闢蹊徑,這可以理解為一種創新,這種創新如果能縮短路途,那麼根據剛才敘述的原理,更多的螞蟻會被吸引過來。
引申
跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點:
1、多樣性
2、正反饋
多樣性保證了螞蟻在覓食的時候不置走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來。我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力。正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了。
引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合。如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水。這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整。
既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化。而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合。而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了!
參數說明:
最大信息素:螞蟻在一開始擁有的信息素總量,越大表示程序在較長一段時間能夠存在信息素。信息素消減的速度:隨著時間的流逝,已經存在於世界上的信息素會消減,這個數值越大,那麼消減的越快。
錯誤概率表示這個螞蟻不往信息素最大的區域走的概率,越大則表示這個螞蟻越有創新性。
速度半徑表示螞蟻一次能走的最大長度,也表示這個螞蟻的感知范圍。
記憶能力表示螞蟻能記住多少個剛剛走過點的坐標,這個值避免了螞蟻在本地打轉,停滯不前。而這個值越大那麼整個系統運行速度就慢,越小則螞蟻越容易原地轉圈。
蟻群演算法的實現
下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩。
其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了。
參數說明:
最大信息素:螞蟻在一開始擁有的信息素總量,越大表示程序在較長一段時間能夠存在信息素。信息素消減的速度:隨著時間的流逝,已經存在於世界上的信息素會消減,這個數值越大,那麼消減的越快。
錯誤概率表示這個螞蟻不往信息素最大的區域走的概率,越大則表示這個螞蟻越有創新性。
速度半徑表示螞蟻一次能走的最大長度,也表示這個螞蟻的感知范圍。
記憶能力表示螞蟻能記住多少個剛剛走過點的坐標,這個值避免了螞蟻在本地打轉,停滯不前。而這個值越大那麼整個系統運行速度就慢,越小則螞蟻越容易原地轉圈。
『捌』 我編寫了一個蟻群演算法的程序,編譯通過,但是運行的時候出現錯誤,調試了半天也沒啥結果,哪位大俠幫幫忙
粘一段你的代碼:
voidCity::Update_Inform()
{
doubleTemp_Inform[N_City][N_City];//定義一個臨時數組,存儲信息素變化量
memset(Temp_Inform,0,sizeof(Temp_Inform));//將該數組所有元素先全部清0
intM=0;
intN=0;
for(intI=0;I<N_Ant;I++)
{
inta=I;
for(intJ=1;J<N_City;J++)
{
M=Ant_Colony[I].Path[J-1];
N=Ant_Colony[I].Path[J];
Temp_Inform[M][N]=Temp_Inform[M][N]+Q/Ant_Colony[I].TotalPathLength;
}
//計算最後一個城市與出發城市之間的信息素變化量
M=Ant_Colony[I].Path[0];
Temp_Inform[N][M]=Temp_Inform[N][M]+Q/Ant_Colony[I].TotalPathLength;
}
//更新環境信息素
for(intIo=0;Io<N_City;Io++)
{
for(intJo=0;Jo<N_City;Jo++)
{
Get_Information[Io][Jo]=(1-Rou)*Get_Information[Io][Jo]+Temp_Inform[Io][Jo];//根據公式6.4所得
}
}
}
上面for循環中
for(intJ=1;J<N_City;J++)
{
M=Ant_Colony[I].Path[J-1];
N=Ant_Colony[I].Path[J];
Temp_Inform[M][N]=Temp_Inform[M][N]+Q/Ant_Colony[I].TotalPathLength;
}
索引MN出現值為-1的情況。這樣Temp_Inform[M][N]的索引越界,修改到了I值,導致Ant_Colony[I]訪問越界。
建議每次修改索引值時候,檢查修改後索引值是否合理。
『玖』 急!請各位懂MATLAB的朋友幫幫忙,蟻群演算法中的一段程序看不懂
我也是這里不太懂,剛才看貼吧里的討論似懂非懂。總結一下意思大概是:相比直接選擇概率P最大的節點(不是你說的最小啊),這種做法像輪盤一樣,加入了隨機性,也就是說並不一定會選擇P最大的節點,但P較大的節點和其附近的節點有更大的概率被選中(根據累加的性質)。
『拾』 尋一個用matlab編的蟻群演算法程序。要求:帶螞蟻尋找最佳路徑過程演示的界面
figure;
x=[2005 2006 2007 2008 2009 2010];
y2=[45906 53809 63184 72123 81941 88833];
a=polyfit(x,y2,1);
xi=2005:1:2010;
yi=polyval(a,xi);
plot(x,y2,'go','MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',6);
xlabel('年份');
ylabel('GDP');
axis([2005 2010 45000 90000])
hold on
plot(xi,yi,'linewidth',2,'markersize',16)
legend('原始數據點','擬合曲線')
plot(x,y2,'-r.')
sprintf('直線方程:Y2=%0.5g*X+(%0.5g)',a(1),a(2))