當前位置:首頁 » 操作系統 » linux進程互斥

linux進程互斥

發布時間: 2022-05-02 10:54:36

A. linux進程間互斥鎖問題

開辟一片共享內存,把互斥鎖建在共享內存上,並設置進程間同步屬性,就能實現你所需的互斥啦

B. 如何實現linux下多線程之間的互斥與同步

Linux設備驅動中必須解決的一個問題是多個進程對共享資源的並發訪問,並發訪問會導致競態,linux提供了多種解決競態問題的方式,這些方式適合不同的應用場景。

Linux內核是多進程、多線程的操作系統,它提供了相當完整的內核同步方法。內核同步方法列表如下:
中斷屏蔽
原子操作
自旋鎖
讀寫自旋鎖
順序鎖
信號量
讀寫信號量
BKL(大內核鎖)
Seq鎖
一、並發與競態:
定義:
並發(concurrency)指的是多個執行單元同時、並行被執行,而並發的執行單元對共享資源(硬體資源和軟體上的全局變數、靜態變數等)的訪問則很容易導致競態(race conditions)。
在linux中,主要的競態發生在如下幾種情況:
1、對稱多處理器(SMP)多個CPU
特點是多個CPU使用共同的系統匯流排,因此可訪問共同的外設和存儲器。
2、單CPU內進程與搶占它的進程
3、中斷(硬中斷、軟中斷、Tasklet、底半部)與進程之間
只要並發的多個執行單元存在對共享資源的訪問,競態就有可能發生。
如果中斷處理程序訪問進程正在訪問的資源,則競態也會會發生。
多個中斷之間本身也可能引起並發而導致競態(中斷被更高優先順序的中斷打斷)。

解決競態問題的途徑是保證對共享資源的互斥訪問,所謂互斥訪問就是指一個執行單元在訪問共享資源的時候,其他的執行單元都被禁止訪問。

訪問共享資源的代碼區域被稱為臨界區,臨界區需要以某種互斥機制加以保護,中斷屏蔽,原子操作,自旋鎖,和信號量都是linux設備驅動中可採用的互斥途徑。

臨界區和競爭條件:
所謂臨界區(critical regions)就是訪問和操作共享數據的代碼段,為了避免在臨界區中並發訪問,編程者必須保證這些代碼原子地執行——也就是說,代碼在執行結束前不可被打斷,就如同整個臨界區是一個不可分割的指令一樣,如果兩個執行線程有可能處於同一個臨界區中,那麼就是程序包含一個bug,如果這種情況發生了,我們就稱之為競爭條件(race conditions),避免並發和防止競爭條件被稱為同步。

死鎖:
死鎖的產生需要一定條件:要有一個或多個執行線程和一個或多個資源,每個線程都在等待其中的一個資源,但所有的資源都已經被佔用了,所有線程都在相互等待,但它們永遠不會釋放已經佔有的資源,於是任何線程都無法繼續,這便意味著死鎖的發生。

二、中斷屏蔽
在單CPU范圍內避免競態的一種簡單方法是在進入臨界區之前屏蔽系統的中斷。
由於linux內核的進程調度等操作都依賴中斷來實現,內核搶占進程之間的並發也就得以避免了。
中斷屏蔽的使用方法:
local_irq_disable()//屏蔽中斷
//臨界區
local_irq_enable()//開中斷
特點:
由於linux系統的非同步IO,進程調度等很多重要操作都依賴於中斷,在屏蔽中斷期間所有的中斷都無法得到處理,因此長時間的屏蔽是很危險的,有可能造成數據丟失甚至系統崩潰,這就要求在屏蔽中斷之後,當前的內核執行路徑應當盡快地執行完臨界區的代碼。
中斷屏蔽只能禁止本CPU內的中斷,因此,並不能解決多CPU引發的競態,所以單獨使用中斷屏蔽並不是一個值得推薦的避免競態的方法,它一般和自旋鎖配合使用。

三、原子操作
定義:原子操作指的是在執行過程中不會被別的代碼路徑所中斷的操作。
(原子原本指的是不可分割的微粒,所以原子操作也就是不能夠被分割的指令)
(它保證指令以「原子」的方式執行而不能被打斷)
原子操作是不可分割的,在執行完畢不會被任何其它任務或事件中斷。在單處理器系統(UniProcessor)中,能夠在單條指令中完成的操作都可以認為是" 原子操作",因為中斷只能發生於指令之間。這也是某些CPU指令系統中引入了test_and_set、test_and_clear等指令用於臨界資源互斥的原因。但是,在對稱多處理器(Symmetric Multi-Processor)結構中就不同了,由於系統中有多個處理器在獨立地運行,即使能在單條指令中完成的操作也有可能受到干擾。我們以decl (遞減指令)為例,這是一個典型的"讀-改-寫"過程,涉及兩次內存訪問。
通俗理解:
原子操作,顧名思義,就是說像原子一樣不可再細分。一個操作是原子操作,意思就是說這個操作是以原子的方式被執行,要一口氣執行完,執行過程不能夠被OS的其他行為打斷,是一個整體的過程,在其執行過程中,OS的其它行為是插不進來的。
分類:linux內核提供了一系列函數來實現內核中的原子操作,分為整型原子操作和位原子操作,共同點是:在任何情況下操作都是原子的,內核代碼可以安全的調用它們而不被打斷。

原子整數操作:
針對整數的原子操作只能對atomic_t類型的數據進行處理,在這里之所以引入了一個特殊的數據類型,而沒有直接使用C語言的int型,主要是出於兩個原因:
第一、讓原子函數只接受atomic_t類型的操作數,可以確保原子操作只與這種特殊類型數據一起使用,同時,這也確保了該類型的數據不會被傳遞給其它任何非原子函數;
第二、使用atomic_t類型確保編譯器不對相應的值進行訪問優化——這點使得原子操作最終接收到正確的內存地址,而不是一個別名,最後就是在不同體系結構上實現原子操作的時候,使用atomic_t可以屏蔽其間的差異。
原子整數操作最常見的用途就是實現計數器。
另一點需要說明原子操作只能保證操作是原子的,要麼完成,要麼不完成,不會有操作一半的可能,但原子操作並不能保證操作的順序性,即它不能保證兩個操作是按某個順序完成的。如果要保證原子操作的順序性,請使用內存屏障指令。
atomic_t和ATOMIC_INIT(i)定義
typedef struct { volatile int counter; } atomic_t;
#define ATOMIC_INIT(i) { (i) }

在你編寫代碼的時候,能使用原子操作的時候,就盡量不要使用復雜的加鎖機制,對多數體系結構來講,原子操作與更復雜的同步方法相比較,給系統帶來的開銷小,對高速緩存行的影響也小,但是,對於那些有高性能要求的代碼,對多種同步方法進行測試比較,不失為一種明智的作法。

原子位操作:
針對位這一級數據進行操作的函數,是對普通的內存地址進行操作的。它的參數是一個指針和一個位號。

為方便其間,內核還提供了一組與上述操作對應的非原子位函數,非原子位函數與原子位函數的操作完全相同,但是,前者不保證原子性,且其名字前綴多兩個下劃線。例如,與test_bit()對應的非原子形式是_test_bit(),如果你不需要原子性操作(比如,如果你已經用鎖保護了自己的數據),那麼這些非原子的位函數相比原子的位函數可能會執行得更快些。

四、自旋鎖
自旋鎖的引入:
如 果每個臨界區都能像增加變數這樣簡單就好了,可惜現實不是這樣,而是臨界區可以跨越多個函數,例如:先得從一個數據結果中移出數據,對其進行格式轉換和解 析,最後再把它加入到另一個數據結構中,整個執行過程必須是原子的,在數據被更新完畢之前,不能有其他代碼讀取這些數據,顯然,簡單的原子操作是無能為力 的(在單處理器系統(UniProcessor)中,能夠在單條指令中完成的操作都可以認為是" 原子操作",因為中斷只能發生於指令之間),這就需要使用更為復雜的同步方法——鎖來提供保護。

自旋鎖的介紹:
Linux內核中最常見的鎖是自旋鎖(spin lock),自旋鎖最多隻能被一個可執行線程持有,如果一個執行線程試圖獲得一個被爭用(已經被持有)的自旋鎖,那麼該線程就會一直進行忙循環—旋轉—等待鎖重新可用,要是鎖未被爭用,請求鎖的執行線程便能立刻得到它,繼續執行,在任意時間,自旋鎖都可以防止多於一個的執行線程同時進入理解區,注意同一個鎖可以用在多個位置—例如,對於給定數據的所有訪問都可以得到保護和同步。
一個被爭用的自旋鎖使得請求它的線程在等待鎖重新可用時自旋(特別浪費處理器時間),所以自旋鎖不應該被長時間持有,事實上,這點正是使用自旋鎖的初衷,在短期間內進行輕量級加鎖,還可以採取另外的方式來處理對鎖的爭用:讓請求線程睡眠,直到鎖重新可用時再喚醒它,這樣處理器就不必循環等待,可以去執行其他代碼,這也會帶來一定的開銷——這里有兩次明顯的上下文切換, 被阻塞的線程要換出和換入。因此,持有自旋鎖的時間最好小於完成兩次上下文切換的耗時,當然我們大多數人不會無聊到去測量上下文切換的耗時,所以我們讓持 有自旋鎖的時間應盡可能的短就可以了,信號量可以提供上述第二種機制,它使得在發生爭用時,等待的線程能投入睡眠,而不是旋轉。
自旋鎖可以使用在中斷處理程序中(此處不能使用信號量,因為它們會導致睡眠),在中斷處理程序中使用自旋鎖時,一定要在獲取鎖之前,首先禁止本地中斷(在 當前處理器上的中斷請求),否則,中斷處理程序就會打斷正持有鎖的內核代碼,有可能會試圖去爭用這個已經持有的自旋鎖,這樣以來,中斷處理程序就會自旋, 等待該鎖重新可用,但是鎖的持有者在這個中斷處理程序執行完畢前不可能運行,這正是我們在前一章節中提到的雙重請求死鎖,注意,需要關閉的只是當前處理器上的中斷,如果中斷發生在不同的處理器上,即使中斷處理程序在同一鎖上自旋,也不會妨礙鎖的持有者(在不同處理器上)最終釋放鎖。

自旋鎖的簡單理解:
理解自旋鎖最簡單的方法是把它作為一個變數看待,該變數把一個臨界區或者標記為「我當前正在運行,請稍等一會」或者標記為「我當前不在運行,可以被使用」。如果A執行單元首先進入常式,它將持有自旋鎖,當B執行單元試圖進入同一個常式時,將獲知自旋鎖已被持有,需等到A執行單元釋放後才能進入。

自旋鎖的API函數:

其實介紹的幾種信號量和互斥機制,其底層源碼都是使用自旋鎖,可以理解為自旋鎖的再包裝。所以從這里就可以理解為什麼自旋鎖通常可以提供比信號量更高的性能。
自旋鎖是一個互斥設備,他只能會兩個值:「鎖定」和「解鎖」。它通常實現為某個整數之中的單個位。
「測試並設置」的操作必須以原子方式完成。
任何時候,只要內核代碼擁有自旋鎖,在相關CPU上的搶占就會被禁止。
適用於自旋鎖的核心規則:
(1)任何擁有自旋鎖的代碼都必須使原子的,除服務中斷外(某些情況下也不能放棄CPU,如中斷服務也要獲得自旋鎖。為了避免這種鎖陷阱,需要在擁有自旋鎖時禁止中斷),不能放棄CPU(如休眠,休眠可發生在許多無法預期的地方)。否則CPU將有可能永遠自旋下去(死機)。
(2)擁有自旋鎖的時間越短越好。

需 要強調的是,自旋鎖別設計用於多處理器的同步機制,對於單處理器(對於單處理器並且不可搶占的內核來說,自旋鎖什麼也不作),內核在編譯時不會引入自旋鎖 機制,對於可搶占的內核,它僅僅被用於設置內核的搶占機制是否開啟的一個開關,也就是說加鎖和解鎖實際變成了禁止或開啟內核搶占功能。如果內核不支持搶 占,那麼自旋鎖根本就不會編譯到內核中。
內核中使用spinlock_t類型來表示自旋鎖,它定義在:
typedef struct {
raw_spinlock_t raw_lock;
#if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
unsigned int break_lock;
#endif
} spinlock_t;

對於不支持SMP的內核來說,struct raw_spinlock_t什麼也沒有,是一個空結構。對於支持多處理器的內核來說,struct raw_spinlock_t定義為
typedef struct {
unsigned int slock;
} raw_spinlock_t;

slock表示了自旋鎖的狀態,「1」表示自旋鎖處於解鎖狀態(UNLOCK),「0」表示自旋鎖處於上鎖狀態(LOCKED)。
break_lock表示當前是否由進程在等待自旋鎖,顯然,它只有在支持搶占的SMP內核上才起作用。
自旋鎖的實現是一個復雜的過程,說它復雜不是因為需要多少代碼或邏輯來實現它,其實它的實現代碼很少。自旋鎖的實現跟體系結構關系密切,核心代碼基本也是由匯編語言寫成,與體協結構相關的核心代碼都放在相關的目錄下,比如。對於我們驅動程序開發人員來說,我們沒有必要了解這么spinlock的內部細節,如果你對它感興趣,請參考閱讀Linux內核源代碼。對於我們驅動的spinlock介面,我們只需包括頭文件。在我們詳細的介紹spinlock的API之前,我們先來看看自旋鎖的一個基本使用格式:
#include
spinlock_t lock = SPIN_LOCK_UNLOCKED;

spin_lock(&lock);
....
spin_unlock(&lock);

從使用上來說,spinlock的API還很簡單的,一般我們會用的的API如下表,其實它們都是定義在中的宏介面,真正的實現在中
#include
SPIN_LOCK_UNLOCKED
DEFINE_SPINLOCK
spin_lock_init( spinlock_t *)
spin_lock(spinlock_t *)
spin_unlock(spinlock_t *)
spin_lock_irq(spinlock_t *)
spin_unlock_irq(spinlock_t *)
spin_lock_irqsace(spinlock_t *,unsigned long flags)
spin_unlock_irqsace(spinlock_t *, unsigned long flags)
spin_trylock(spinlock_t *)
spin_is_locked(spinlock_t *)

• 初始化
spinlock有兩種初始化形式,一種是靜態初始化,一種是動態初始化。對於靜態的spinlock對象,我們用 SPIN_LOCK_UNLOCKED來初始化,它是一個宏。當然,我們也可以把聲明spinlock和初始化它放在一起做,這就是 DEFINE_SPINLOCK宏的工作,因此,下面的兩行代碼是等價的。
DEFINE_SPINLOCK (lock);
spinlock_t lock = SPIN_LOCK_UNLOCKED;

spin_lock_init 函數一般用來初始化動態創建的spinlock_t對象,它的參數是一個指向spinlock_t對象的指針。當然,它也可以初始化一個靜態的沒有初始化的spinlock_t對象。
spinlock_t *lock
......
spin_lock_init(lock);

• 獲取鎖
內核提供了三個函數用於獲取一個自旋鎖。
spin_lock:獲取指定的自旋鎖。
spin_lock_irq:禁止本地中斷並獲取自旋鎖。
spin_lock_irqsace:保存本地中斷狀態,禁止本地中斷並獲取自旋鎖,返回本地中斷狀態。

自旋鎖是可以使用在中斷處理程序中的,這時需要使用具有關閉本地中斷功能的函數,我們推薦使用 spin_lock_irqsave,因為它會保存加鎖前的中斷標志,這樣就會正確恢復解鎖時的中斷標志。如果spin_lock_irq在加鎖時中斷是關閉的,那麼在解鎖時就會錯誤的開啟中斷。

另外兩個同自旋鎖獲取相關的函數是:
spin_trylock():嘗試獲取自旋鎖,如果獲取失敗則立即返回非0值,否則返回0。
spin_is_locked():判斷指定的自旋鎖是否已經被獲取了。如果是則返回非0,否則,返回0。
• 釋放鎖
同獲取鎖相對應,內核提供了三個相對的函數來釋放自旋鎖。
spin_unlock:釋放指定的自旋鎖。
spin_unlock_irq:釋放自旋鎖並激活本地中斷。
spin_unlock_irqsave:釋放自旋鎖,並恢復保存的本地中斷狀態。

五、讀寫自旋鎖
如 果臨界區保護的數據是可讀可寫的,那麼只要沒有寫操作,對於讀是可以支持並發操作的。對於這種只要求寫操作是互斥的需求,如果還是使用自旋鎖顯然是無法滿 足這個要求(對於讀操作實在是太浪費了)。為此內核提供了另一種鎖-讀寫自旋鎖,讀自旋鎖也叫共享自旋鎖,寫自旋鎖也叫排他自旋鎖。
讀寫自旋鎖是一種比自旋鎖粒度更小的鎖機制,它保留了「自旋」的概念,但是在寫操作方面,只能最多有一個寫進程,在讀操作方面,同時可以有多個讀執行單元,當然,讀和寫也不能同時進行。
讀寫自旋鎖的使用也普通自旋鎖的使用很類似,首先要初始化讀寫自旋鎖對象:
// 靜態初始化
rwlock_t rwlock = RW_LOCK_UNLOCKED;
//動態初始化
rwlock_t *rwlock;
...
rw_lock_init(rwlock);

在讀操作代碼里對共享數據獲取讀自旋鎖:
read_lock(&rwlock);
...
read_unlock(&rwlock);

在寫操作代碼里為共享數據獲取寫自旋鎖:
write_lock(&rwlock);
...
write_unlock(&rwlock);

需要注意的是,如果有大量的寫操作,會使寫操作自旋在寫自旋鎖上而處於寫飢餓狀態(等待讀自旋鎖的全部釋放),因為讀自旋鎖會自由的獲取讀自旋鎖。

讀寫自旋鎖的函數類似於普通自旋鎖,這里就不一一介紹了,我們把它列在下面的表中。
RW_LOCK_UNLOCKED
rw_lock_init(rwlock_t *)
read_lock(rwlock_t *)
read_unlock(rwlock_t *)
read_lock_irq(rwlock_t *)
read_unlock_irq(rwlock_t *)
read_lock_irqsave(rwlock_t *, unsigned long)
read_unlock_irqsave(rwlock_t *, unsigned long)
write_lock(rwlock_t *)
write_unlock(rwlock_t *)
write_lock_irq(rwlock_t *)
write_unlock_irq(rwlock_t *)
write_lock_irqsave(rwlock_t *, unsigned long)
write_unlock_irqsave(rwlock_t *, unsigned long)
rw_is_locked(rwlock_t *)
六、順序瑣
順序瑣(seqlock)是對讀寫鎖的一種優化,若使用順序瑣,讀執行單元絕不會被寫執行單元阻塞,也就是說,讀執行單元可以在寫執行單元對被順序瑣保護的共享資源進行寫操作時仍然可以繼續讀,而不必等待寫執行單元完成寫操作,寫執行單元也不需要等待所有讀執行單元完成讀操作才去進行寫操作。
但是,寫執行單元與寫執行單元之間仍然是互斥的,即如果有寫執行單元在進行寫操作,其它寫執行單元必須自旋在哪裡,直到寫執行單元釋放了順序瑣。
如果讀執行單元在讀操作期間,寫執行單元已經發生了寫操作,那麼,讀執行單元必須重新讀取數據,以便確保得到的數據是完整的,這種鎖在讀寫同時進行的概率比較小時,性能是非常好的,而且它允許讀寫同時進行,因而更大的提高了並發性,
注意,順序瑣由一個限制,就是它必須被保護的共享資源不含有指針,因為寫執行單元可能使得指針失效,但讀執行單元如果正要訪問該指針,將導致Oops。
七、信號量
Linux中的信號量是一種睡眠鎖,如果有一個任務試圖獲得一個已經被佔用的信號量時,信號量會將其推進一個等待隊列,然後讓其睡眠,這時處理器能重獲自由,從而去執行其它代碼,當持有信號量的進程將信號量釋放後,處於等待隊列中的哪個任務被喚醒,並獲得該信號量。
信號量,或旗標,就是我們在操作系統里學習的經典的P/V原語操作。
P:如果信號量值大於0,則遞減信號量的值,程序繼續執行,否則,睡眠等待信號量大於0。
V:遞增信號量的值,如果遞增的信號量的值大於0,則喚醒等待的進程。

信號量的值確定了同時可以有多少個進程可以同時進入臨界區,如果信號量的初始值始1,這信號量就是互斥信號量(MUTEX)。對於大於1的非0值信號量,也可稱為計數信號量(counting semaphore)。對於一般的驅動程序使用的信號量都是互斥信號量。
類似於自旋鎖,信號量的實現也與體系結構密切相關,具體的實現定義在頭文件中,對於x86_32系統來說,它的定義如下:
struct semaphore {
atomic_t count;
int sleepers;
wait_queue_head_t wait;
};

信號量的初始值count是atomic_t類型的,這是一個原子操作類型,它也是一個內核同步技術,可見信號量是基於原子操作的。我們會在後面原子操作部分對原子操作做詳細介紹。

信號量的使用類似於自旋鎖,包括創建、獲取和釋放。我們還是來先展示信號量的基本使用形式:
static DECLARE_MUTEX(my_sem);
......
if (down_interruptible(&my_sem))

{
return -ERESTARTSYS;
}
......
up(&my_sem)

Linux內核中的信號量函數介面如下:
static DECLARE_SEMAPHORE_GENERIC(name, count);
static DECLARE_MUTEX(name);
seam_init(struct semaphore *, int);
init_MUTEX(struct semaphore *);
init_MUTEX_LOCKED(struct semaphore *)
down_interruptible(struct semaphore *);
down(struct semaphore *)
down_trylock(struct semaphore *)
up(struct semaphore *)
• 初始化信號量
信號量的初始化包括靜態初始化和動態初始化。靜態初始化用於靜態的聲明並初始化信號量。
static DECLARE_SEMAPHORE_GENERIC(name, count);
static DECLARE_MUTEX(name);

對於動態聲明或創建的信號量,可以使用如下函數進行初始化:
seam_init(sem, count);
init_MUTEX(sem);
init_MUTEX_LOCKED(struct semaphore *)

顯然,帶有MUTEX的函數始初始化互斥信號量。LOCKED則初始化信號量為鎖狀態。
• 使用信號量
信號量初始化完成後我們就可以使用它了
down_interruptible(struct semaphore *);
down(struct semaphore *)
down_trylock(struct semaphore *)
up(struct semaphore *)

down函數會嘗試獲取指定的信號量,如果信號量已經被使用了,則進程進入不可中斷的睡眠狀態。down_interruptible則會使進程進入可中斷的睡眠狀態。關於進程狀態的詳細細節,我們在內核的進程管理里在做詳細介紹。

down_trylock嘗試獲取信號量, 如果獲取成功則返回0,失敗則會立即返回非0。

當退出臨界區時使用up函數釋放信號量,如果信號量上的睡眠隊列不為空,則喚醒其中一個等待進程。

八、讀寫信號量
類似於自旋鎖,信號量也有讀寫信號量。讀寫信號量API定義在頭文件中,它的定義其實也是體系結構相關的,因此具體實現定義在頭文件中,以下是x86的例子:
struct rw_semaphore {
signed long count;
spinlock_t wait_lock;
struct list_head wait_list;
};

C. linux c 如何實現進程間互斥呢

文件鎖/信號量,不要用進程共享鎖。

D. linux系統的進程間通信有哪幾種方式

  • 數據傳輸
    一個進程需要將它的數據發送給另一個進程,發送的數據量在一個位元組到幾M位元組之間

  • 共享數據
    多個進程想要操作共享數據,一個進程對共享數據

  • 通知事
    一個進程需要向另一個或一組進程發送消息,通知它(它們)發生了某種事件(如進程終止時要通知父進程)。

  • 資源共享
    多個進程之間共享同樣的資源。為了作到這一點,需要內核提供鎖和同步機制。

  • 進程式控制制
    有些進程希望完全控制另一個進程的執行(如Debug進程),此時控制進程希望能夠攔截另一個進程的所有陷入和異常,並能夠及時知道它的狀態改變。

  • Linux 進程間通信(IPC)的發展

    linux下的進程通信手段基本上是從Unix平台上的進程通信手段繼承而來的。而對Unix發展做出重大貢獻的兩大主力AT&T的貝爾實驗室及BSD(加州大學伯克利分校的伯克利軟體發布中心)在進程間通信方面的側重點有所不同。

    前者對Unix早期的進程間通信手段進行了系統的改進和擴充,形成了「system V IPC」,通信進程局限在單個計算機內;

    後者則跳過了該限制,形成了基於套介面(socket)的進程間通信機制。

    Linux則把兩者繼承了下來

  • 早期UNIX進程間通信

  • 基於System V進程間通信

  • 基於Socket進程間通信

  • POSIX進程間通信。

  • UNIX進程間通信方式包括:管道、FIFO、信號。

    System V進程間通信方式包括:System V消息隊列、System V信號燈、System V共享內存

    POSIX進程間通信包括:posix消息隊列、posix信號燈、posix共享內存。

    由於Unix版本的多樣性,電子電氣工程協會(IEEE)開發了一個獨立的Unix標准,這個新的ANSI Unix標准被稱為計算機環境的可移植性操作系統界面(PSOIX)。現有大部分Unix和流行版本都是遵循POSIX標準的,而Linux從一開始就遵循POSIX標准;

    BSD並不是沒有涉足單機內的進程間通信(socket本身就可以用於單機內的進程間通信)。事實上,很多Unix版本的單機IPC留有BSD的痕跡,如4.4BSD支持的匿名內存映射、4.3+BSD對可靠信號語義的實現等等。

    linux使用的進程間通信方式

  • 管道(pipe),流管道(s_pipe)和有名管道(FIFO)

  • 信號(signal)

  • 消息隊列

  • 共享內存

  • 信號量

  • 套接字(socket)

  • 管道( pipe )

    管道這種通訊方式有兩種限制,一是半雙工的通信,數據只能單向流動,二是只能在具有親緣關系的進程間使用。進程的親緣關系通常是指父子進程關系。

    流管道s_pipe: 去除了第一種限制,可以雙向傳輸.

    管道可用於具有親緣關系進程間的通信,命名管道:name_pipe克服了管道沒有名字的限制,因此,除具有管道所具有的功能外,它還允許無親緣關系進程間的通信;

    信號量( semophore )

    信號量是一個計數器,可以用來控制多個進程對共享資源的訪問。它常作為一種鎖機制,防止某進程正在訪問共享資源時,其他進程也訪問該資源。因此,主要作為進程間以及同一進程內不同線程之間的同步手段。

    信號是比較復雜的通信方式,用於通知接受進程有某種事件發生,除了用於進程間通信外,進程還可以發送信號給進程本身;linux除了支持Unix早期信號語義函數sigal外,還支持語義符合Posix.1標準的信號函數sigaction(實際上,該函數是基於BSD的,BSD為了實現可靠信號機制,又能夠統一對外介面,用sigaction函數重新實現了signal函數);

    消息隊列( message queue )

    消息隊列是由消息的鏈表,存放在內核中並由消息隊列標識符標識。消息隊列克服了信號傳遞信息少、管道只能承載無格式位元組流以及緩沖區大小受限等缺點。

    消息隊列是消息的鏈接表,包括Posix消息隊列system V消息隊列。有足夠許可權的進程可以向隊列中添加消息,被賦予讀許可權的進程則可以讀走隊列中的消息。消息隊列克服了信號承載信息量少,管道只能承載無格式位元組流以及緩沖區大小受限等缺點。

    信號 ( singal )

    信號是一種比較復雜的通信方式,用於通知接收進程某個事件已經發生。

    主要作為進程間以及同一進程不同線程之間的同步手段。

    共享內存( shared memory )

    共享內存就是映射一段能被其他進程所訪問的內存,這段共享內存由一個進程創建,但多個進程都可以訪問。共享內存是最快的 IPC 方式,它是針對其他進程間通信方式運行效率低而專門設計的。它往往與其他通信機制,如信號量,配合使用,來實現進程間的同步和通信。

    使得多個進程可以訪問同一塊內存空間,是最快的可用IPC形式。是針對其他通信機制運行效率較低而設計的。往往與其它通信機制,如信號量結合使用,來達到進程間的同步及互斥。

    套接字( socket )

    套解口也是一種進程間通信機制,與其他通信機制不同的是,它可用於不同機器間的進程通信

    更為一般的進程間通信機制,可用於不同機器之間的進程間通信。起初是由Unix系統的BSD分支開發出來的,但現在一般可以移植到其它類Unix系統上:Linux和System V的變種都支持套接字。

    進程間通信各種方式效率比較

    類型

    無連接

    可靠

    流控制

    記錄消息類型

    優先順序

    普通PIPE N Y Y N

    流PIPE N Y Y N

    命名PIPE(FIFO) N Y Y N

    消息隊列 N Y Y Y

    信號量 N Y Y Y

    共享存儲 N Y Y Y

    UNIX流SOCKET N Y Y N

    UNIX數據包SOCKET Y Y N N

    注:無連接: 指無需調用某種形式的OPEN,就有發送消息的能力流控制:

    如果系統資源短缺或者不能接收更多消息,則發送進程能進行流量控制

    各種通信方式的比較和優缺點

  • 管道:速度慢,容量有限,只有父子進程能通訊

  • FIFO:任何進程間都能通訊,但速度慢

  • 消息隊列:容量受到系統限制,且要注意第一次讀的時候,要考慮上一次沒有讀完數據的問題

  • 信號量:不能傳遞復雜消息,只能用來同步

  • 共享內存區:能夠很容易控制容量,速度快,但要保持同步,比如一個進程在寫的時候,另一個進程要注意讀寫的問題,相當於線程中的線程安全,當然,共享內存區同樣可以用作線程間通訊,不過沒這個必要,線程間本來就已經共享了同一進程內的一塊內存

  • 如果用戶傳遞的信息較少或是需要通過信號來觸發某些行為.前文提到的軟中斷信號機制不失為一種簡捷有效的進程間通信方式.

    但若是進程間要求傳遞的信息量比較大或者進程間存在交換數據的要求,那就需要考慮別的通信方式了。

    無名管道簡單方便.但局限於單向通信的工作方式.並且只能在創建它的進程及其子孫進程之間實現管道的共享:

    有名管道雖然可以提供給任意關系的進程使用.但是由於其長期存在於系統之中,使用不當容易出錯.所以普通用戶一般不建議使用。

    消息緩沖可以不再局限於父子進程,而允許任意進程通過共享消息隊列來實現進程間通信,並由系統調用函數來實現消息發送和接收之間的同步,從而使得用戶在使用消息緩沖進行通信時不再需要考慮同步問題,使用方便,但是信息的復制需要額外消耗CPU的時間,不適宜於信息量大或操作頻繁的場合。

    共享內存針對消息緩沖的缺點改而利用內存緩沖區直接交換信息,無須復制,快捷、信息量大是其優點。

    但是共享內存的通信方式是通過將共享的內存緩沖區直接附加到進程的虛擬地址空間中來實現的,因此,這些進程之間的讀寫操作的同步問題操作系統無法實現。必須由各進程利用其他同步工具解決。另外,由於內存實體存在於計算機系統中,所以只能由處於同一個計算機系統中的諸進程共享。不方便網路通信。

    共享內存塊提供了在任意數量的進程之間進行高效雙向通信的機制。每個使用者都可以讀取寫入數據,但是所有程序之間必須達成並遵守一定的協議,以防止諸如在讀取信息之前覆寫內存空間等競爭狀態的出現。

    不幸的是,Linux無法嚴格保證提供對共享內存塊的獨占訪問,甚至是在您通過使用IPC_PRIVATE創建新的共享內存塊的時候也不能保證訪問的獨占性。 同時,多個使用共享內存塊的進程之間必須協調使用同一個鍵值。

E. Linux系統中對臨界資源進行互斥訪問的手段是

自旋鎖(Spin Lock)是一種典型的對臨界資源進行互斥訪問的手段,其名稱來源於它的工作方式。為了獲得一個自旋鎖,在某CPU上運行的代碼需先執行一個原子操作,該操作測試並設置(Test-AndSet)某個內存變數。由於它是原子操作,所以在該操作完成之前其他執行單元不可能訪問這個內存變數。如果測試結果表明鎖已經空閑,則程序獲得這個自旋鎖並繼續執行;如果測試結果表明鎖仍被佔用,程序將在一個小的循環內重復這個「測試並設置」操作,即進行所謂的「自旋」,通俗地說就是「在原地打轉」。當自旋鎖的持有者通過重置該變數釋放這個自旋鎖後,某個等待的「測試並設置」操作向其調用者報告鎖已釋放。理解自旋鎖最簡單的方法是把它作為一個變數看待,該變數把一個臨界區標記為「我當前在運行,請稍等一會」或者標記為「我當前不在運行,可以被使用。如果A執行單元首先進入常式,它將持有自旋鎖;當B執行單元試圖進入同一個常式時,將獲知自旋鎖已被持有,需等到A執行單元釋放後才能進入。在ARM體系結構下,自旋鎖的實現借用了ldrex指令、strex指令、ARM處理器內存屏障指令dmb和dsb、wfe指令和sev指令,這類似於代碼清單7.1的邏輯。可以說既要保證排他性,也要處理好內存屏障。

自旋鎖主要針對SMP或單CPU但內核可搶占的情況,對於單CPU和內核不支持搶占的系統,自旋鎖退化為空操作。在單CPU和內核可搶占的系統中,自旋鎖持有期間中內核的搶占將被禁止。由於內核可搶占的單CPU系統的行為實際上很類似於SMP系統,因此,在這樣的單CPU系統中使用自旋鎖仍十分必要。另外,在多核SMP的情況下,任何一個核拿到了自旋鎖,該核上的搶占調度也暫時禁止了,但是沒有禁止另外一個核的搶占調度。盡管用了自旋鎖可以保證臨界區不受別的CPU和本CPU內的搶占進程打擾,但是得到鎖的代碼路徑在執行臨界區的時候,還可能受到中斷和底半部的影響。為了防止這種影響,就需要用到自旋鎖的衍生。

F. linux下互斥鎖mutex,貌似鎖不上呢

多線程的效果就是同一時間各個線程都在執行。
加鎖不是給線程上鎖。

pthread_mutex_lock(&qlock);表示嘗試去把qlock上鎖,它會先判斷qlock是否已經上鎖,如果已經上鎖這個線程就會停在這一步直到其他線程把鎖解開。它才繼續運行。
所以代碼中要麼是線程1先執行完後執行線程2,要麼就是線程2先執行,再執行線程1.而線程3一開始就執行了。
互斥量mutex是用來給多線程之間的貢獻資源上鎖的。也就是同一個時間只允許一個線程去訪問該資源(資源:比如對文件的寫操作)。
現在來回答樓主的問題:
不是只要在pthread_mutex_lock(&qlock)與pthread_mutex_unlock(&qlock)之間的代碼執行,其他的都不能介入嗎?
其他的都不能介入,不是整個進程只運行這一個線程,其他線程都停住了。
「不能介入「這個動作需要程序員自己設計來保證:好比前面提到的文件讀寫操作。為了防止多個線程同時對文件進行寫入操作,這就需要把資源上鎖了。
如果只有線程1加鎖,那是不是這個鎖就沒有意義了呢?
這個理解可以有

G. 求助,關於linux的線程同步問題

【Linux多線程】三個經典同步問題
標簽: 多線程同步生產者與消費者寫者與讀者

目錄(?)[+]
在了解了《同步與互斥的區別 》之後,我們來看看幾個經典的線程同步的例子。相信通過具體場景可以讓我們學會分析和解決這類線程同步的問題,以便以後應用在實際的項目中。
一、生產者-消費者問題
問題描述:
一組生產者進程和一組消費者進程共享一個初始為空、大小為 n 的緩沖區,只有緩沖區沒滿時,生產者才能把消息放入到緩沖區,否則必須等待;只有緩沖區不空時,消費者才能從中取出消息,否則必須等待。由於緩沖區是臨界資源,它只允許一個生產者放入消息,或者一個消費者從中取出消息。
分析:
關系分析:生產者和消費者對緩沖區互斥訪問是互斥關系,同時生產者和消費者又是一個相互協作的關系,只有生產者生產之後,消費者才能消費,它們也是同步關系。
整理思路:這里比較簡單,只有生產者和消費者兩個進程,且這兩個進程存在著互斥關系和同步關系。那麼需要解決的是互斥和同步的PV操作的位置。
信號量設置:信號量mutex作為互斥信號量,用於控制互斥訪問緩沖池,初值為1;信號量full用於記錄當前緩沖池中「滿」緩沖區數,初值為 0;信號量empty用於記錄當前緩沖池中「空」緩沖區數,初值為n。
代碼示例:(semaphore類的封裝見下文)
#include<iostream>
#include<unistd.h> // sleep
#include<pthread.h>
#include"semaphore.h"
using namespace std;
#define N 5

semaphore mutex("/", 1); // 臨界區互斥信號量
semaphore empty("/home", N); // 記錄空緩沖區數,初值為N
semaphore full("/home/songlee",0); // 記錄滿緩沖區數,初值為0
int buffer[N]; // 緩沖區,大小為N
int i=0;
int j=0;

void* procer(void* arg)
{
empty.P(); // empty減1
mutex.P();

buffer[i] = 10 + rand() % 90;
printf("Procer %d write Buffer[%d]: %d\n",arg,i+1,buffer[i]);
i = (i+1) % N;

mutex.V();
full.V(); // full加1
}

void* consumer(void* arg)
{
full.P(); // full減1
mutex.P();

printf(" \033[1;31m");
printf("Consumer %d read Buffer[%d]: %d\n",arg,j+1,buffer[j]);
printf("\033[0m");
j = (j+1) % N;

mutex.V();
empty.V(); // empty加1
}

int main()
{
pthread_t id[10];

// 開10個生產者線程,10個消費者線程
for(int k=0; k<10; ++k)
pthread_create(&id[k], NULL, procer, (void*)(k+1));

for(int k=0; k<10; ++k)
pthread_create(&id[k], NULL, consumer, (void*)(k+1));

sleep(1);
return 0;
}

編譯運行輸出結果:
Procer 1 write Buffer[1]: 83
Procer 2 write Buffer[2]: 26
Procer 3 write Buffer[3]: 37
Procer 5 write Buffer[4]: 35
Procer 4 write Buffer[5]: 33
Consumer 1 read Buffer[1]: 83
Procer 6 write Buffer[1]: 35
Consumer 2 read Buffer[2]: 26
Consumer 3 read Buffer[3]: 37
Consumer 4 read Buffer[4]: 35
Consumer 5 read Buffer[5]: 33
Consumer 6 read Buffer[1]: 35
Procer 7 write Buffer[2]: 56
Procer 8 write Buffer[3]: 22
Procer 10 write Buffer[4]: 79
Consumer 9 read Buffer[2]: 56
Consumer 10 read Buffer[3]: 22
Procer 9 write Buffer[5]: 11
Consumer 7 read Buffer[4]: 79
Consumer 8 read Buffer[5]:

二、讀者-寫者問題
問題描述:
有讀者和寫者兩組並發線程,共享一個文件,當兩個或以上的讀線程同時訪問共享數據時不會產生副作用,但若某個寫線程和其他線程(讀線程或寫線程)同時訪問共享數據時則可能導致數據不一致的錯誤。因此要求:
允許多個讀者可以同時對文件執行讀操作;
只允許一個寫者往文件中寫信息;
任一寫者在完成寫操作之前不允許其他讀者或寫者工作;
寫者執行寫操作前,應讓已有的讀者和寫者全部退出。
分析:
關系分析:由題目分析可知,讀者和寫者是互斥的,寫者和寫者也是互斥的,而讀者和讀者不存在互斥問題。
整理思路:寫者是比較簡單的,它與任何線程互斥,用互斥信號量的 PV 操作即可解決。讀者的問題比較復雜,它必須實現與寫者的互斥,多個讀者還可以同時讀。所以,在這里用到了一個計數器,用它來判斷當前是否有讀者讀文件。當有讀者的時候寫者是無法寫文件的,此時讀者會一直佔用文件,當沒有讀者的時候寫者才可以寫文件。同時,不同的讀者對計數器的訪問也應該是互斥的。
信號量設置:首先設置一個計數器count,用來記錄當前的讀者數量,初值為0;設置互斥信號量mutex,用於保護更新 count 變數時的互斥;設置互斥信號量rw用於保證讀者和寫者的互斥訪問。
代碼示例:
#include<iostream>
#include<unistd.h> // sleep
#include<pthread.h>
#include"semaphore.h"
using namespace std;

int count = 0; // 記錄當前的讀者數量
semaphore mutex("/",1); // 用於保護更新count變數時的互斥
semaphore rw("/home",1); // 用於保證讀者和寫者的互斥

void* writer(void* arg)
{
rw.P(); // 互斥訪問共享文件

printf(" Writer %d start writing...\n", arg);
sleep(1);
printf(" Writer %d finish writing...\n", arg);

rw.V(); // 釋放共享文件
}

void* reader(void* arg)
{
mutex.P(); // 互斥訪問count變數
if(count == 0) // 當第一個讀線程讀文件時
rw.P(); // 阻止寫線程寫
++count; // 讀者計數器加1
mutex.V(); // 釋放count變數

printf("Reader %d start reading...\n", arg);
sleep(1);
printf("Reader %d finish reading...\n", arg);

mutex.P(); // 互斥訪問count變數
--count; // 讀者計數器減1
if(count == 0) // 當最後一個讀線程讀完文件
rw.V(); // 允許寫線程寫
mutex.V(); // 釋放count變數
}

int main()
{
pthread_t id[8]; // 開6個讀線程,2個寫線程

pthread_create(&id[0], NULL, reader, (void*)1);
pthread_create(&id[1], NULL, reader, (void*)2);

pthread_create(&id[2], NULL, writer, (void*)1);
pthread_create(&id[3], NULL, writer, (void*)2);

pthread_create(&id[4], NULL, reader, (void*)3);
pthread_create(&id[5], NULL ,reader, (void*)4);
sleep(2);
pthread_create(&id[6], NULL, reader, (void*)5);
pthread_create(&id[7], NULL ,reader, (void*)6);

sleep(4);
return 0;
}555657585960

編譯運行的結果如下:
Reader 2 start reading...
Reader 1 start reading...
Reader 3 start reading...
Reader 4 start reading...
Reader 1 finish reading...
Reader 2 finish reading...
Reader 3 finish reading...
Reader 4 finish reading...
Writer 1 start writing...
Writer 1 finish writing...
Writer 2 start writing...
Writer 2 finish writing...
Reader 5 start reading...
Reader 6 start reading...
Reader 5 finish reading...
Reader 6 finish reading...

三、哲學家進餐問題
問題描述:
一張圓桌上坐著 5 名哲學家,桌子上每兩個哲學家之間擺了一根筷子,桌子的中間是一碗米飯,如圖所示:

哲學家們傾注畢生精力用於思考和進餐,哲學家在思考時,並不影響他人。只有當哲學家飢餓的時候,才試圖拿起左、右兩根筷子(一根一根拿起)。如果筷子已在他人手上,則需等待。飢餓的哲學家只有同時拿到了兩根筷子才可以開始進餐,當進餐完畢後,放下筷子繼續思考。
分析:
關系分析:5名哲學家與左右鄰居對其中間筷子的訪問是互斥關系。
整理思路:顯然這里有 5 個線程,那麼要如何讓一個哲學家拿到左右兩個筷子而不造成死鎖或飢餓現象?解決方法有兩個,一個是讓他們同時拿兩個筷子;二是對每個哲學家的動作制定規則,避免飢餓或死鎖現象的發生。
信號量設置:定義互斥信號量數組chopstick[5] = {1,1,1,1,1}用於對 5 根筷子的互斥訪問。
示例代碼:

H. 進程的同步與互斥實驗報告Linux

相交進程之間的關系主要有兩種,同步與互斥。所謂互斥,是指散步在不同進程之間的若干程序片斷,當某個進程運行其中一個程序片段時,其它進程就不能運行它 們之中的任一程序片段,只能等到該進程運行完這個程序片段後才可以運行。所謂同步,是指散步在不同進程之間的若干程序片斷,它們的運行必須嚴格按照規定的 某種先後次序來運行,這種先後次序依賴於要完成的特定的任務。
顯然,同步是一種更為復雜的互斥,而互斥是一種特殊的同步。
也就是說互斥是兩個線程之間不可以同時運行,他們會相互排斥,必須等待一個線程運行完畢,另一個才能運行,而同步也是不能同時運行,但他是必須要安照某種次序來運行相應的線程(也是一種互斥)!
總結:互斥:是指某一資源同時只允許一個訪問者對其進行訪問,具有唯一性和排它性。但互斥無法限制訪問者對資源的訪問順序,即訪問是無序的。
同步:是指在互斥的基礎上(大多數情況),通過其它機制實現訪問者對資源的有序訪問。在大多數情況下,同步已經實現了互斥,特別是所有寫入資源的情況必定是互斥的。少數情況是指可以允許多個訪問者同時訪問資源

I. linux多線程信號量怎麼實現互斥啊

信號量與互斥鎖之間的區別:1. 互斥量用於線程的互斥,信號量用於線程的同步。 這是互斥量和信號量的根本區別,也就是互斥和同步之間的區別。 互斥:是指某一資源同時只允許一個訪問者對其進行訪問,具有唯一性和排它性。但互斥無法限制訪問者對資源的訪問順序,即訪問是無序的。 同步:是指在互斥的基礎上(大多數情況),通過其它機制實現訪問者對資源的有序訪問。在大多數情況下,同步已經實現了互斥,特別是所有寫入資源的情況必定是互斥的。少數情況是指可以允許多個訪問者同時訪問資源 2. 互斥量值只能為0/1,信號量值可以為非負整數。 也就是說,一個互斥量只能用於一個資源的互斥訪問,它不能實現多個資源的多線程互斥問題。信號量可以實現多個同類資源的多線程互斥和同步。當信號量為單值信號量是,也可以完成一個資源的互斥訪問。 3. 互斥量的加鎖和解鎖必須由同一線程分別對應使用,信號量可以由一個線程釋放,另一個線程得到。

J. linux多進程互斥問題

不要再子進程里增加 s ,在父進程做

#include<stdio.h>
#include<stdlib.h>
#include<unistd.h>
voidmain(void)
{
intrid,s=0;

rid=fork();
if(rid==0)
{
printf("進程1,s=%d ",s);
exit(EXIT_SUCCESS);
}
s=s+1;

rid=fork();
if(rid==0)
{
printf("進程2,s=%d ",s);
exit(EXIT_SUCCESS);
}
}
熱點內容
數模編程 發布:2024-10-06 04:04:43 瀏覽:14
雷霆一擊伺服器搭建 發布:2024-10-06 03:58:14 瀏覽:498
導演腳本 發布:2024-10-06 03:37:34 瀏覽:564
施耐德有密碼程序如何打開 發布:2024-10-06 03:37:00 瀏覽:891
解壓縮文件修復 發布:2024-10-06 03:31:17 瀏覽:703
如何設置休眠時不需要開機密碼 發布:2024-10-06 03:03:25 瀏覽:231
密碼工作三個事關的內容是什麼 發布:2024-10-06 02:39:44 瀏覽:424
21款昂科威哪個配置好 發布:2024-10-06 02:20:39 瀏覽:836
拆裝空調壓縮機 發布:2024-10-06 01:59:47 瀏覽:420
dl演算法 發布:2024-10-06 01:59:44 瀏覽:846