當前位置:首頁 » 操作系統 » 演算法常用

演算法常用

發布時間: 2022-05-02 05:44:40

『壹』 幾種常用的演算法簡介

1、窮舉法窮舉法是最基本的演算法設計策略,其思想是列舉出問題所有的可能解,逐一進行判別,找出滿足條件的解。
窮舉法的運用關鍵在於解決兩個問題:
在運用窮舉法時,容易出現的問題是可能解過多,導致演算法效率很低,這就需要對列舉可能解的方法進行優化。
以題1041--純素數問題為例,從1000到9999都可以看作是可能解,可以通過對所有這些可能解逐一進行判別,找出其中的純素數,但只要稍作分析,就會發現其實可以大幅度地降低可能解的范圍。根據題意易知,個位只可能是3、5、7,再根據題意可知,可以在3、5、7的基礎上,先找出所有的二位純素數,再在二位純素數基礎上找出三位純素數,最後在三位純素數的基礎上找出所有的四位純素數。
2、分治法分治法也是應用非常廣泛的一種演算法設計策略,其思想是將問題分解為若乾子問題,從而可以遞歸地求解各子問題,再綜合出問題的解。
分治法的運用關鍵在於解決三個問題:
我們熟知的如漢諾塔問題、折半查找演算法、快速排序演算法等都是分治法運用的典型案例。
以題1045--Square
Coins為例,先對題意進行分析,可設一個函數f(m,
n)等於用面值不超過n2的貨幣構成總值為m的方案數,則容易推導出:
f(m,
n)
=
f(m-0*n*n,
n-1)+f(m-1*n*n,
n-1)+f(m-2*n*n,
n-1)+...+f(m-k*n*n,
n-1)
這里的k是幣值為n2的貨幣最多可以用多少枚,即k=m/(n*n)。
也很容易分析出,f(m,
1)
=
f(1,
n)
=
1
對於這樣的題目,一旦分析出了遞推公式,程序就非常好寫了。所以在動手開始寫程序之前,分析工作做得越徹底,邏輯描述越准確、簡潔,寫起程序來就會越容易。
3、動態規劃法
動態規劃法多用來計算最優問題,動態規劃法與分治法的基本思想是一致的,但處理的手法不同。動態規劃法在運用時,要先對問題的分治規律進行分析,找出終結子問題,以及子問題向父問題歸納的規則,而演算法則直接從終結子問題開始求解,逐層向上歸納,直到歸納出原問題的解。
動態規劃法多用於在分治過程中,子問題可能重復出現的情況,在這種情況下,如果按照常規的分治法,自上向下分治求解,則重復出現的子問題就會被重復地求解,從而增大了冗餘計算量,降低了求解效率。而採用動態規劃法,自底向上求解,每個子問題只計算一次,就可以避免這種重復的求解了。
動態規劃法還有另外一種實現形式,即備忘錄法。備忘錄的基本思想是設立一個稱為備忘錄的容器,記錄已經求得解的子問題及其解。仍然採用與分治法相同的自上向下分治求解的策略,只是對每一個分解出的子問題,先在備忘錄中查找該子問題,如果備忘錄中已經存在該子問題,則不須再求解,可以從備忘錄中直接得到解,否則,對子問題遞歸求解,且每求得一個子問題的解,都將子問題及解存入備忘錄中。
例如,在題1045--Square
Coins中,可以採用分治法求解,也可以採用動態規劃法求解,即從f(m,
1)和f(1,
n)出發,逐層向上計算,直到求得f(m,
n)。
在競賽中,動態規劃和備忘錄的思想還可以有另一種用法。有些題目中的可能問題數是有限的,而在一次運行中可能需要計算多個測試用例,可以採用備忘錄的方法,預先將所有的問題的解記錄下來,然後輸入一個測試用例,就查備忘錄,直接找到答案輸出。這在各問題之間存在父子關系的情況下,會更有效。例如,在題1045--Square
Coins中,題目中已經指出了最大的目標幣值不超過300,也就是說問題數只有300個,而且各問題的計算中存在重疊的子問題,可以採用動態規劃法,將所有問題的解先全部計算出來,再依次輸入測試用例數據,並直接輸出答案。
4、回溯法回溯法是基於問題狀態樹搜索的求解法,其可適用范圍很廣。從某種角度上說,可以把回溯法看作是優化了的窮舉法。回溯法的基本思想是逐步構造問題的可能解,一邊構造,一邊用約束條件進行判別,一旦發現已經不可能構造出滿足條件的解了,則退回上一步構造過程,重新進行構造。這個退回的過程,就稱之為回溯。
回溯法在運用時,要解決的關鍵問題在於:
回溯法的經典案例也很多,例如全排列問題、N後問題等。
5、貪心法貪心法也是求解最優問題的常用演算法策略,利用貪心法策略所設計的演算法,通常效率較高,演算法簡單。貪心法的基本思想是對問題做出目前看來最好的選擇,即貪心選擇,並使問題轉化為規模更小的子問題。如此迭代,直到子問題可以直接求解。
基於貪心法的經典演算法例如:哈夫曼演算法、最小生成樹演算法、最短路徑演算法等。

『貳』 數據挖掘的常用演算法有哪幾類

有十大經典演算法

下面是網站給出的答案:
1. C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;
2) 在樹構造過程中進行剪枝;
3) 能夠完成對連續屬性的離散化處理;
4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。

2. The k-means algorithm 即K-Means演算法
k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。

3. Support vector machines
支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假 定平行超平面間的距離或差距越大,分類器的總誤差越小。一個極好的指南是C.J.C Burges的《模式識別支持向量機指南》。van der Walt 和 Barnard 將支持向量機和其他分類器進行了比較。

4. The Apriori algorithm
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。

5. 最大期望(EM)演算法
在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然 估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variabl)。最大期望經常用在機器學習和計算機視覺的數據集聚(Data Clustering)領域。

6. PageRank
PageRank是Google演算法的重要內容。2001年9月被授予美國專利,專利人是Google創始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指網頁,而是指佩奇,即這個等級方法是以佩奇來命名的。
PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票, 被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」——衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自 學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。

7. AdaBoost
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器 (強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權 值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。

8. kNN: k-nearest neighbor classification
K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。

9. Naive Bayes
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。 樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以 及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。 但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬 性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。

10. CART: 分類與回歸樹
CART, Classification and Regression Trees。 在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。

『叄』 c語言常用演算法有哪些

0) 窮舉法
窮舉法簡單粗暴,沒有什麼問題是搞不定的,只要你肯花時間。同時對於小數據量,窮舉法就是最優秀的演算法。就像太祖長拳,簡單,人人都能會,能解決問題,但是與真正的高手過招,就頹了。
1) 貪婪演算法
貪婪演算法可以獲取到問題的局部最優解,不一定能獲取到全局最優解,同時獲取最優解的好壞要看貪婪策略的選擇。特點就是簡單,能獲取到局部最優解。就像打狗棍法,同一套棍法,洪七公和魯有腳的水平就差太多了,因此同樣是貪婪演算法,不同的貪婪策略會導致得到差異非常大的結果。
2) 動態規劃演算法
當最優化問題具有重復子問題和最優子結構的時候,就是動態規劃出場的時候了。動態規劃演算法的核心就是提供了一個memory來緩存重復子問題的結果,避免了遞歸的過程中的大量的重復計算。動態規劃演算法的難點在於怎麼將問題轉化為能夠利用動態規劃演算法來解決。當重復子問題的數目比較小時,動態規劃的效果也會很差。如果問題存在大量的重復子問題的話,那麼動態規劃對於效率的提高是非常恐怖的。就像斗轉星移武功,對手強它也會比較強,對手若,他也會比較弱。
3)分治演算法
分治演算法的邏輯更簡單了,就是一個詞,分而治之。分治演算法就是把一個大的問題分為若干個子問題,然後在子問題繼續向下分,一直到base cases,通過base cases的解決,一步步向上,最終解決最初的大問題。分治演算法是遞歸的典型應用。
4) 回溯演算法
回溯演算法是深度優先策略的典型應用,回溯演算法就是沿著一條路向下走,如果此路不同了,則回溯到上一個
分岔路,在選一條路走,一直這樣遞歸下去,直到遍歷萬所有的路徑。八皇後問題是回溯演算法的一個經典問題,還有一個經典的應用場景就是迷宮問題。
5) 分支限界演算法
回溯演算法是深度優先,那麼分支限界法就是廣度優先的一個經典的例子。回溯法一般來說是遍歷整個解空間,獲取問題的所有解,而分支限界法則是獲取一個解(一般來說要獲取最優解)。

『肆』 什麼是演算法,常用的演算法描述有哪些

演算法的描述方式主要有自然語言,流程圖,偽代碼等,它們的優勢和不足可以簡單地歸納如下:1、自然語言優勢:自然語言描述的演算法通俗易懂,不用專門的訓練不足:a.由於自然語言的歧義性,容易導致演算法執行的不確定性.b.自然語言的語句一般較長,導致描述的演算法太長.c.當一個演算法中循環和分歧較多時就很難清晰地表示出來.d.自然語言表示的演算法不便翻譯成計算機程序設計語言.2、流程圖優勢:流程圖描述的演算法清晰簡潔,容易表達選擇結構,它不依賴於任何具體的計算機和計算機程序設計語言,從而有利於不同環境的程序設計.不足:不易書寫,修改起來比較費事,可以藉助於專用的流程圖製作軟體來提升繪制和修改.3、偽代碼優勢:偽代碼迴避了程序設計語言的嚴格、煩瑣的書寫格式,書寫方便,同時具備格式緊湊,易於理解,便於向計算機程序設計語言過渡的優點.不足:由於偽代碼的種類繁多,語句不容易規范,有時會產生誤讀.

『伍』 常見演算法有哪些

模擬
擬陣
暴力
貪心
二分法
整體二
三分法
一般動規與遞推
斯坦納樹
動態樹分治
2-SAT
並查集
差分約束
最短路
最小割
費用流
最大流
有上下界網路流
虛樹
矩陣樹定理
最小生成樹
點分治
樹鏈剖分
prufer編碼
哈夫曼樹
拉格朗日乘數法
BSGS
博弈論
矩陣乘法
高斯消元
容斥原理
抽屜原理
模線性方程組
莫比烏斯反演
快速傅里葉變換
擴展歐幾里得演算法(
裴蜀定理
dfs序
深度搜索
迭代深搜
廣度搜索
雙向廣搜
啟發式搜索
dancing link
迴文自動機
KMP
字典樹
後綴數組
AC自動機
後綴自動機
manacher
凸包
掃描線
三角剖分
旋轉卡殼
半平面交
cdq分治
莫隊演算法
爬山演算法
分數規劃
模擬退火
朱劉演算法
隨機增量法
倍增演算法

『陸』 常用的加密演算法有哪些

對稱密鑰加密

對稱密鑰加密 Symmetric Key Algorithm 又稱為對稱加密、私鑰加密、共享密鑰加密:這類演算法在加密和解密時使用相同的密鑰,或是使用兩個可以簡單的相互推算的密鑰,對稱加密的速度一般都很快。

  • 分組密碼

  • 分組密碼 Block Cipher 又稱為「分塊加密」或「塊加密」,將明文分成多個等長的模塊,使用確定的演算法和對稱密鑰對每組分別加密解密。這也就意味著分組密碼的一個優點在於可以實現同步加密,因為各分組間可以相對獨立。

    與此相對應的是流密碼:利用密鑰由密鑰流發生器產生密鑰流,對明文串進行加密。與分組密碼的不同之處在於加密輸出的結果不僅與單獨明文相關,而是與一組明文相關。

  • DES、3DES

  • 數據加密標准 DES Data Encryption Standard 是由IBM在美國國家安全局NSA授權下研製的一種使用56位密鑰的分組密碼演算法,並於1977年被美國國家標准局NBS公布成為美國商用加密標准。但是因為DES固定的密鑰長度,漸漸不再符合在開放式網路中的安全要求,已經於1998年被移出商用加密標准,被更安全的AES標准替代。

    DES使用的Feistel Network網路屬於對稱的密碼結構,對信息的加密和解密的過程極為相似或趨同,使得相應的編碼量和線路傳輸的要求也減半。

    DES是塊加密演算法,將消息分成64位,即16個十六進制數為一組進行加密,加密後返回相同大小的密碼塊,這樣,從數學上來說,64位0或1組合,就有2^64種可能排列。DES密鑰的長度同樣為64位,但在加密演算法中,每逢第8位,相應位會被用於奇偶校驗而被演算法丟棄,所以DES的密鑰強度實為56位。

    3DES Triple DES,使用不同Key重復三次DES加密,加密強度更高,當然速度也就相應的降低。

  • AES

  • 高級加密標准 AES Advanced Encryption Standard 為新一代數據加密標准,速度快,安全級別高。由美國國家標准技術研究所NIST選取Rijndael於2000年成為新一代的數據加密標准。

    AES的區塊長度固定為128位,密鑰長度可以是128位、192位或256位。AES演算法基於Substitution Permutation Network代換置列網路,將明文塊和密鑰塊作為輸入,並通過交錯的若干輪代換"Substitution"和置換"Permutation"操作產生密文塊。

    AES加密過程是在一個4*4的位元組矩陣(或稱為體State)上運作,初始值為一個明文區塊,其中一個元素大小就是明文區塊中的一個Byte,加密時,基本上各輪加密循環均包含這四個步驟:

  • ECC

  • ECC即 Elliptic Curve Cryptography 橢圓曲線密碼學,是基於橢圓曲線數學建立公開密鑰加密的演算法。ECC的主要優勢是在提供相當的安全等級情況下,密鑰長度更小。

    ECC的原理是根據有限域上的橢圓曲線上的點群中的離散對數問題ECDLP,而ECDLP是比因式分解問題更難的問題,是指數級的難度。而ECDLP定義為:給定素數p和橢圓曲線E,對Q=kP,在已知P,Q 的情況下求出小於p的正整數k。可以證明由k和P計算Q比較容易,而由Q和P計算k則比較困難。

  • 數字簽名

  • 數字簽名 Digital Signature 又稱公鑰數字簽名是一種用來確保數字消息或文檔真實性的數學方案。一個有效的數字簽名需要給接收者充足的理由來信任消息的可靠來源,而發送者也無法否認這個簽名,並且這個消息在傳輸過程中確保沒有發生變動。

    數字簽名的原理在於利用公鑰加密技術,簽名者將消息用私鑰加密,然後公布公鑰,驗證者就使用這個公鑰將加密信息解密並對比消息。一般而言,會使用消息的散列值來作為簽名對象。

『柒』 數據挖掘常用演算法有哪些

1、 樸素貝葉斯


樸素貝葉斯(NB)屬於生成式模型(即需要計算特徵與類的聯合概率分布),計算過程非常簡單,只是做了一堆計數。NB有一個條件獨立性假設,即在類已知的條件下,各個特徵之間的分布是獨立的。這樣樸素貝葉斯分類器的收斂速度將快於判別模型,如邏輯回歸,所以只需要較少的訓練數據即可。即使NB條件獨立假設不成立,NB分類器在實踐中仍然表現的很出色。它的主要缺點是它不能學習特徵間的相互作用,用mRMR中的R來講,就是特徵冗餘。


2、邏輯回歸(logistic regression)


邏輯回歸是一個分類方法,屬於判別式模型,有很多正則化模型的方法(L0,L1,L2),而且不必像在用樸素貝葉斯那樣擔心特徵是否相關。與決策樹與SVM相比,還會得到一個不錯的概率解釋,甚至可以輕松地利用新數據來更新模型(使用在線梯度下降演算法online gradient descent)。如果需要一個概率架構(比如,簡單地調節分類閾值,指明不確定性,或者是要獲得置信區間),或者希望以後將更多的訓練數據快速整合到模型中去,那麼可以使用它。


3、 線性回歸


線性回歸是用於回歸的,而不像Logistic回歸是用於分類,其基本思想是用梯度下降法對最小二乘法形式的誤差函數進行優化。


4、最近鄰演算法——KNN


KNN即最近鄰演算法,其主要過程為:計算訓練樣本和測試樣本中每個樣本點的距離(常見的距離度量有歐式距離,馬氏距離等);對上面所有的距離值進行排序;選前k個最小距離的樣本;根據這k個樣本的標簽進行投票,得到最後的分類類別;如何選擇一個最佳的K值,這取決於數據。


5、決策樹


決策樹中很重要的一點就是選擇一個屬性進行分枝,因此要注意一下信息增益的計算公式,並深入理解它。


6、SVM支持向量機


高准確率,為避免過擬合提供了很好的理論保證,而且就算數據在原特徵空間線性不可分,只要給個合適的核函數,它就能運行得很好。在動輒超高維的文本分類問題中特別受歡迎。可惜內存消耗大,難以解釋,運行和調參也有些煩人,而隨機森林卻剛好避開了這些缺點,比較實用。

『捌』 機器學習一般常用的演算法有哪些

機器學習是人工智慧的核心技術,是學習人工智慧必不可少的環節。機器學習中有很多演算法,能夠解決很多以前難以企的問題,機器學習中涉及到的演算法有不少,下面小編就給大家普及一下這些演算法。

一、線性回歸

一般來說,線性回歸是統計學和機器學習中最知名和最易理解的演算法之一。這一演算法中我們可以用來預測建模,而預測建模主要關注最小化模型誤差或者盡可能作出最准確的預測,以可解釋性為代價。我們將借用、重用包括統計學在內的很多不同領域的演算法,並將其用於這些目的。當然我們可以使用不同的技術從數據中學習線性回歸模型,例如用於普通最小二乘法和梯度下降優化的線性代數解。就目前而言,線性回歸已經存在了200多年,並得到了廣泛研究。使用這種技術的一些經驗是盡可能去除非常相似(相關)的變數,並去除噪音。這是一種快速、簡單的技術。

二、Logistic 回歸

它是解決二分類問題的首選方法。Logistic 回歸與線性回歸相似,目標都是找到每個輸入變數的權重,即系數值。與線性回歸不同的是,Logistic 回歸對輸出的預測使用被稱為 logistic 函數的非線性函數進行變換。logistic 函數看起來像一個大的S,並且可以將任何值轉換到0到1的區間內。這非常實用,因為我們可以規定logistic函數的輸出值是0和1並預測類別值。像線性回歸一樣,Logistic 回歸在刪除與輸出變數無關的屬性以及非常相似的屬性時效果更好。它是一個快速的學習模型,並且對於二分類問題非常有效。

三、線性判別分析(LDA)

在前面我們介紹的Logistic 回歸是一種分類演算法,傳統上,它僅限於只有兩類的分類問題。而LDA的表示非常簡單直接。它由數據的統計屬性構成,對每個類別進行計算。單個輸入變數的 LDA包括兩個,第一就是每個類別的平均值,第二就是所有類別的方差。而在線性判別分析,進行預測的方法是計算每個類別的判別值並對具備最大值的類別進行預測。該技術假設數據呈高斯分布,因此最好預先從數據中刪除異常值。這是處理分類預測建模問題的一種簡單而強大的方法。

四、決策樹

決策樹是預測建模機器學習的一種重要演算法。決策樹模型的表示是一個二叉樹。這是演算法和數據結構中的二叉樹,沒什麼特別的。每個節點代表一個單獨的輸入變數x和該變數上的一個分割點。而決策樹的葉節點包含一個用於預測的輸出變數y。通過遍歷該樹的分割點,直到到達一個葉節點並輸出該節點的類別值就可以作出預測。當然決策樹的有點就是決策樹學習速度和預測速度都很快。它們還可以解決大量問題,並且不需要對數據做特別准備。

五、樸素貝葉斯

其實樸素貝葉斯是一個簡單但是很強大的預測建模演算法。而這個模型由兩種概率組成,這兩種概率都可以直接從訓練數據中計算出來。第一種就是每個類別的概率,第二種就是給定每個 x 的值,每個類別的條件概率。一旦計算出來,概率模型可用於使用貝葉斯定理對新數據進行預測。當我們的數據是實值時,通常假設一個高斯分布,這樣我們可以簡單的估計這些概率。而樸素貝葉斯之所以是樸素的,是因為它假設每個輸入變數是獨立的。這是一個強大的假設,真實的數據並非如此,但是,該技術在大量復雜問題上非常有用。所以說,樸素貝葉斯是一個十分實用的功能。

六、K近鄰演算法

K近鄰演算法簡稱KNN演算法,KNN 演算法非常簡單且有效。KNN的模型表示是整個訓練數據集。KNN演算法在整個訓練集中搜索K個最相似實例(近鄰)並匯總這K個實例的輸出變數,以預測新數據點。對於回歸問題,這可能是平均輸出變數,對於分類問題,這可能是眾數類別值。而其中的訣竅在於如何確定數據實例間的相似性。如果屬性的度量單位相同,那麼最簡單的技術是使用歐幾里得距離,我們可以根據每個輸入變數之間的差值直接計算出來其數值。當然,KNN需要大量內存或空間來存儲所有數據,但是只有在需要預測時才執行計算。我們還可以隨時更新和管理訓練實例,以保持預測的准確性。

七、Boosting 和 AdaBoost

首先,Boosting 是一種集成技術,它試圖集成一些弱分類器來創建一個強分類器。這通過從訓練數據中構建一個模型,然後創建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預測訓練集,或添加的模型數量已經達到最大數量。而AdaBoost 是第一個為二分類開發的真正成功的 boosting 演算法。這是理解 boosting 的最佳起點。現代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。當然,AdaBoost 與短決策樹一起使用。在第一個決策樹創建之後,利用每個訓練實例上樹的性能來衡量下一個決策樹應該對每個訓練實例付出多少注意力。難以預測的訓練數據被分配更多權重,而容易預測的數據分配的權重較少。依次創建模型,每一個模型在訓練實例上更新權重,影響序列中下一個決策樹的學習。在所有決策樹建立之後,對新數據進行預測,並且通過每個決策樹在訓練數據上的精確度評估其性能。所以說,由於在糾正演算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數據十分重要。

八、學習向量量化演算法(簡稱 LVQ)

學習向量量化也是機器學習其中的一個演算法。可能大家不知道的是,K近鄰演算法的一個缺點是我們需要遍歷整個訓練數據集。學習向量量化演算法(簡稱 LVQ)是一種人工神經網路演算法,它允許你選擇訓練實例的數量,並精確地學習這些實例應該是什麼樣的。而學習向量量化的表示是碼本向量的集合。這些是在開始時隨機選擇的,並逐漸調整以在學習演算法的多次迭代中最好地總結訓練數據集。在學習之後,碼本向量可用於預測。最相似的近鄰通過計算每個碼本向量和新數據實例之間的距離找到。然後返回最佳匹配單元的類別值或作為預測。如果大家重新調整數據,使其具有相同的范圍,就可以獲得最佳結果。當然,如果大家發現KNN在大家數據集上達到很好的結果,請嘗試用LVQ減少存儲整個訓練數據集的內存要求

『玖』 常用的演算法表示形式有哪些

演算法的常用表示方法有三種:

1、使用自然語言描述演算法;

2、使用流程圖描述演算法;

3、使用偽代碼描述演算法。

演算法是指對解決方案的准確、完整的描述,是解決問題的一系列清晰的指令。該演算法代表了描述解決問題的策略和機制的系統方式。也就是說,對於某個標准輸入,可以在有限的時間內獲得所需的輸出。

如果一個演算法有缺陷或不適合某個問題,執行該演算法將無法解決該問題。不同的演算法可能使用不同的時間、空間或效率來完成相同的任務。一個演算法的優劣可以用空間復雜度和時間復雜度來衡量。

『拾』 作為一個程序員,有哪些常用的演算法

常用的演算法有:遞推法、貪心法、列舉法、遞歸法、分治法和模擬法
原則:1. 扎實的基礎。數據結構、離散數學、編譯原理,這些是所有計算機科學的基礎,如果不掌握他們,很難寫出高水平的程序。據我的觀察,學計算機專業的人比學其他專業的人更能寫出高質量的軟體。程序人人都會寫,但當你發現寫到一定程度很難再提高的時候,就應該想想是不是要回過頭來學學這些最基本的理論。不要一開始就去學OOP,即使你再精通OOP,遇到一些基本演算法的時候可能也會束手無策。

2. 豐富的想像力。不要拘泥於固定的思維方式,遇到問題的時候要多想幾種解決問題的方案,試試別人從沒想過的方法。豐富的想像力是建立在豐富的知識的基礎上,除計算機以外,多涉獵其他的學科,比如天文、物理、數學等等。另外,多看科幻電影也是一個很好的途徑。

3. 最簡單的是最好的。這也許是所有科學都遵循的一條准則,如此復雜的質能互換原理在愛因斯坦眼裡不過是一個簡單得不能再簡單的公式:E=mc2。簡單的方法更容易被人理解,更容易實現,也更容易維護。遇到問題時要優先考慮最簡單的方案,只有簡單方案不能滿足要求時再考慮復雜的方案。

4. 不鑽牛角尖。當你遇到障礙的時候,不妨暫時遠離電腦,看看窗外的風景,聽聽輕音樂,和朋友聊聊天。當我遇到難題的時候會去玩游戲,而且是那種極暴力的打鬥類游戲,當負責游戲的那部分大腦細胞極度亢奮的時候,負責編程的那部分大腦細胞就得到了充分的休息。當重新開始工作的時候,我會發現那些難題現在竟然可以迎刃而解。

5. 對答案的渴求。人類自然科學的發展史就是一個渴求得到答案的過程,即使只能知道答案的一小部分也值得我們去付出。只要你堅定信念,一定要找到問題的答案,你才會付出精力去探索,即使最後沒有得到答案,在過程中你也會學到很多東西。

6. 多與別人交流。三人行必有我師,也許在一次和別人不經意的談話中,就可以迸出靈感的火花。多上上網,看看別人對同一問題的看法,會給你很大的啟發。

7. 良好的編程風格。注意養成良好的習慣,代碼的縮進編排,變數的命名規則要始終保持一致。大家都知道如何排除代碼中錯誤,卻往往忽視了對注釋的排錯。注釋是程序的一個重要組成部分,它可以使你的代碼更容易理解,而如果代碼已經清楚地表達了你的思想,就不必再加註釋了,如果注釋和代碼不一致,那就更加糟糕。

8. 韌性和毅力。這也許是"高手"和一般程序員最大的區別。A good programming is 99 weat and 1 ffee。高手們並不是天才,他們是在無數個日日夜夜中磨練出來的。成功能給我們帶來無比的喜悅,但過程卻是無比的枯燥乏味。你不妨做個測試,找個10000以內的素數表,把它們全都抄下來,然後再檢查三遍,如果能夠不間斷地完成這一工作,你就可以滿足這一條。

希望對你有幫助

熱點內容
腳本設計圖 發布:2025-01-18 18:06:17 瀏覽:600
內部存儲空間不足總是跳出來 發布:2025-01-18 17:56:22 瀏覽:950
安卓光遇更新後魔法商店去哪裡了 發布:2025-01-18 17:55:47 瀏覽:132
安卓手機怎麼變成蘋果設備 發布:2025-01-18 17:46:06 瀏覽:915
linux服務端 發布:2025-01-18 17:36:55 瀏覽:250
表白代碼的編譯器是什麼 發布:2025-01-18 17:36:53 瀏覽:999
錄像機日誌伺服器地址怎麼填 發布:2025-01-18 17:28:17 瀏覽:110
安卓手機如何調整圖標樣式 發布:2025-01-18 17:23:53 瀏覽:549
計算機配置單怎麼算 發布:2025-01-18 17:23:52 瀏覽:81
超級終端如何清空配置 發布:2025-01-18 17:18:44 瀏覽:598