當前位置:首頁 » 操作系統 » 特徵檢測演算法

特徵檢測演算法

發布時間: 2022-04-30 14:47:48

① 圖像識別演算法都有哪些

圖像識別,是指利用計算機對圖像進行處理、分析和理解,以識別各種不同模式的目標和對像的技術。一般工業使用中,採用工業相機拍攝圖片,然後再利用軟體根據圖片灰階差做進一步識別處理,圖像識別軟體國外代表的有康耐視等,國內代表的有圖智能等。另外在地理學中指將遙感圖像進行分類的技術。

② 人臉圖像特徵提取原理是什麼

人臉圖像特徵提取:人臉識別系統可使用的特徵通常分為視覺特徵、像素統計特徵、人臉圖像變換系數特徵、人臉圖像代數 特徵等。人臉特徵提取就是針對人臉的某些特徵進行的。人臉特徵提取,也稱人臉表徵,它是對人臉進行特徵建模的過程。人臉特徵提取的方法歸納起來分為兩大 類:一種是基於知識的表徵方法;另外一種是基於代數特徵或統計學習的表徵方法。基於知識的表徵方法主要是根據人臉器官的形狀描述以及他們之間的距離特性來獲得有助於人臉分類的特徵數據,其特徵分 量通常包括特徵點間的歐氏距離、曲率和角度等。人臉由眼睛、鼻子、嘴、下巴等局部構成,對這些局部和它們之間結構關系的幾何描述,可作為識別人臉的重要特 征,這些特徵被稱為幾何特徵。基於知識的人臉表徵主要包括基於幾何特徵的方法和模板匹配法。說到人臉識別,大部分的人第一反應是「刷臉」,我們來看下人臉識別的定義:人臉識別,是基於人的臉部特徵信息進行身份識別的一種生物識別技術。用攝像機或攝像頭採集含有人臉的圖像或視頻流,並自動在圖像中檢測和跟蹤人臉,進而對檢測到的人臉進行臉部的一系列相關技術,通常也叫做人像識別、面部識別。通過變換增強圖像陰影或降低光區域的灰度值范圍,從而把人臉圖像的整體亮度變換到一個預先定義的標准人臉圖像。

③ 對一張圖片進行特徵提取的具體演算法和程序。越具體越好。感謝,例如算出圖像的形狀長寬高之類的。

對一張圖片進行特徵提取的具體演算法和程序,越具體越好,感謝例如算出圖像的形狀,長寬之類的,我覺得對圖片特徵提取的體術法並沒有什麼具體演算法,因為每個相機照出來的圖片,它的放大縮小都是不一樣的,不可能從一個圖片算出一個圖像的長寬高,只能夠算出一個大概的長寬高,如果要算出非常准確的茶膏,只能用一些紅外測距儀,還有某些特定的儀器才能構測量出,一些建築物的長寬高不能夠從一個圖片上面去算出一個建築物的長寬高的是根本沒法算出來的。

④ 人臉識別技術的核心演算法是什麼

人臉識別核心演算法包括檢測定位、建模、紋理變換、表情變換、模型統計訓練、識別匹配等關鍵步驟,其中最關鍵的技術包括兩部分:人臉檢測(Face Detect)和人臉識別(Face Identification)。

檢測技術核心稱為:迭代動態局部特徵分析(SDLFA),它是以國際通用的局域特徵分析(LFA)和動態局域特徵分析(DLFA)為基礎,並且針對現實業務場景進行了全面的演算法增強及結果優化,識別技術核心稱為:實時面部特徵匹配(RFFM),其識別特徵數據緊湊,特徵演算法准確高效,是國際國內獨創性的識別技術。

⑤ 特徵提取演算法有哪些

圖像的特徵可分為兩個層次,包括低層視覺特徵,和高級語義特徵。低層視覺特徵包括紋理、顏色、形狀三方面。語義特徵是事物與事物之間的關系。紋理特徵提取演算法有:灰度共生矩陣法,傅里葉功率譜法顏色特徵提取演算法有:直方圖法,累計直方圖法,顏色聚類法等等。形狀特徵提取演算法有:空間矩特徵等等高級語義提取:語義網路、數理邏輯、框架等方法

⑥ 百度識圖的核心技術是什麼

網路識圖的核心技術原理:

對於這種網路,谷歌的圖像搜索一般由演算法實現,一般是三個步驟:
1. 將目標圖片進行特徵提取,描述圖像的演算法很多,用的比較多的是:SIFT描述子,指紋演算法函數,bundling features演算法,hash function(散列函數)等。也可以根據不同的圖像,設計不同的演算法,比如圖像局部N階矩的方法提取圖像特徵。
2. 將圖像特徵信息進行編碼,並將海量圖像編碼做查找表。對於目標圖像,可以對解析度較大的圖像進行降采樣,減少運算量後在進行圖像特徵提取和編碼處理。
3. 相似度匹配運算:利用目標圖像的編碼值,在圖像搜索引擎中的圖像資料庫進行全局或是局部的相似度計算;根據所需要的魯棒性,設定閾值,然後將相似度高的圖片預保留下來;最後應該還有一步篩選最佳匹配圖片,這個應該還是用到特徵檢測演算法。
其中每個步驟都有很多演算法研究,圍繞數學,統計學,圖像編碼,信號處理等理論進行研究。

⑦ 人臉識別的識別演算法

人臉識別的基本方法

人臉識別的方法很多,以下介紹一些主要的人臉識別方法。

(1)幾何特徵的人臉識別方法

幾何特徵可以是眼、鼻、嘴等的形狀和它們之間的幾何關系(如相互之間的距離)。這些演算法識別速度快,需要的內存小,但識別率較低。

(2)基於特徵臉(PCA)的人臉識別方法

特徵臉方法是基於KL變換的人臉識別方法,KL變換是圖像壓縮的一種最優正交變換。高維的圖像空間經過KL變換後得到一組新的正交基,保留其中重要的正交基,由這些基可以張成低維線性空間。如果假設人臉在這些低維線性空間的投影具有可分性,就可以將這些投影用作識別的特徵矢量,這就是特徵臉方法的基本思想。這些方法需要較多的訓練樣本,而且完全是基於圖像灰度的統計特性的。目前有一些改進型的特徵臉方法。

(3)神經網路的人臉識別方法

神經網路的輸入可以是降低解析度的人臉圖像、局部區域的自相關函數、局部紋理的二階矩等。這類方法同樣需要較多的樣本進行訓練,而在許多應用中,樣本數量是很有限的。

(4)彈性圖匹配的人臉識別方法

彈性圖匹配法在二維的空間中定義了一種對於通常的人臉變形具有一定的不變性的距離,並採用屬性拓撲圖來代表人臉,拓撲圖的任一頂點均包含一特徵向量,用來記錄人臉在該頂點位置附近的信息。該方法結合了灰度特性和幾何因素,在比對時可以允許圖像存在彈性形變,在克服表情變化對識別的影響方面收到了較好的效果,同時對於單個人也不再需要多個樣本進行訓練。

(5)線段Hausdorff 距離(LHD) 的人臉識別方法

心理學的研究表明,人類在識別輪廓圖(比如漫畫)的速度和准確度上絲毫不比識別灰度圖差。LHD是基於從人臉灰度圖像中提取出來的線段圖的,它定義的是兩個線段集之間的距離,與眾不同的是,LHD並不建立不同線段集之間線段的一一對應關系,因此它更能適應線段圖之間的微小變化。實驗結果表明,LHD在不同光照條件下和不同姿態情況下都有非常出色的表現,但是它在大表情的情況下識別效果不好。

(6)支持向量機(SVM) 的人臉識別方法

近年來,支持向量機是統計模式識別領域的一個新的熱點,它試圖使得學習機在經驗風險和泛化能力上達到一種妥協,從而提高學習機的性能。支持向量機主要解決的是一個2分類問題,它的基本思想是試圖把一個低維的線性不可分的問題轉化成一個高維的線性可分的問題。通常的實驗結果表明SVM有較好的識別率,但是它需要大量的訓練樣本(每類300個),這在實際應用中往往是不現實的。而且支持向量機訓練時間長,方法實現復雜,該函數的取法沒有統一的理論。

人臉識別的方法很多,當前的一個研究方向是多方法的融合,以提高識別率。

在人臉識別中,第一類的變化是應該放大而作為區分個體的標準的,而第二類的變化應該消除,因為它們可以代表同一個個體。通常稱第一類變化為類間變化,而稱第二類變化為類內變化。對於人臉,類內變化往往大於類間變化,從而使在受類內變化干擾的情況下利用類間變化區分個體變得異常困難。正是基於上述原因,一直到21 世紀初,國外才開始出現人臉識別的商用,但由於人臉識別演算法非常復雜,只能採用龐大的伺服器,基於強大的計算機平台。



如果可以的話,可以Te一下colorreco,更好的技術解答。

⑧ 特徵檢測的技術特點

大多數入侵檢測系統都是採用特徵檢測這種技術,它的主要優點有:1
:容易實現:基於特徵的入侵檢測的計算模型比較容易實現。主要的匹配演算法也都是成熟演算法。因此實現上技術難點比較少。 2: 檢測精確:對入侵特徵的精確描述使入侵檢測系統可以很容易將入侵辨別出來。同時,因為檢測結果有明顯的參照,可以幫助系統管理員採取相應的措施來防止入侵。
3:升級容易:不少基於特徵檢測的入侵檢測系統都提供了自己的規則定義語言,當新的攻擊或漏洞出現時,廠商或用戶只要根據該攻擊或漏洞的特徵編寫對應的規則,就可以升級系統。

⑨ 特徵點檢測有什麼用

在圖像處理中,特徵點可以稱興趣點或者角點,三者經常相互使用,即圖像的極值點,線段的終點,曲線曲率最大的點或者水平或者豎直方向上屬性最大的點等等,這些特徵點是圖像很重要的特徵,對圖像圖形的理解和分析有很重要的作用。特徵點在保留圖像圖形重要特徵的同時,可以代替整幅圖像的處理,有效地減少信息的數據量,使其信息的含量很高,有效地提高了計算的速度,有利於圖像的可靠匹配,使得實時處理成為可能。
特徵點檢測就是是對有具體定義的、或者是能夠具體檢測出來的特徵點的檢測。目前檢測方法很多,具體分有三大類基於灰度圖像的角點檢測、基於二值圖像的角點檢測、基於輪廓曲線的角點檢測。基於灰度圖像的角點檢測又可分為基於梯度、基於模板和基於模板梯度組合3類方法,其中基於模板的方法主要考慮像素領域點的灰度變化,即圖像亮度的變化,將與鄰點亮度對比足夠大的點定義為角點。常見的基於模板的角點檢測演算法有Kitchen-Rosenfeld角點檢測演算法,Harris角點檢測演算法、KLT角點檢測演算法及SUSAN角點檢測演算法。和其他角點檢測演算法相比,SUSAN角點檢測演算法具有演算法簡單、位置准確、抗雜訊能力強等特點。

熱點內容
c語言單元測驗 發布:2025-01-19 07:58:56 瀏覽:990
c語言貪吃蛇源代碼 發布:2025-01-19 07:58:53 瀏覽:879
c語言char數組長度 發布:2025-01-19 07:46:23 瀏覽:10
淘寶如何清理緩存垃圾 發布:2025-01-19 07:42:07 瀏覽:438
電腦輸入密碼階段如何改語言 發布:2025-01-19 07:42:05 瀏覽:786
存儲器國產率 發布:2025-01-19 07:04:36 瀏覽:567
銳程cc藍鯨版選什麼配置 發布:2025-01-19 06:56:28 瀏覽:169
城鎮居民醫保卡的原始密碼是多少 發布:2025-01-19 06:55:54 瀏覽:788
wifi密碼如何修改密碼 發布:2025-01-19 06:39:06 瀏覽:962
sqlserver認證 發布:2025-01-19 06:34:30 瀏覽:815