crsa演算法
* RSA.H - header file for RSA.C
*/
/* Copyright (C) RSA Laboratories, a division of RSA Data Security,
Inc., created 1991. All rights reserved.
*/
int RSAPublicEncrypt PROTO_LIST
((unsigned char *, unsigned int *, unsigned char *, unsigned int,
R_RSA_PUBLIC_KEY *, R_RANDOM_STRUCT *));
int RSAPrivateEncrypt PROTO_LIST
((unsigned char *, unsigned int *, unsigned char *, unsigned int,
R_RSA_PRIVATE_KEY *));
int RSAPublicDecrypt PROTO_LIST
((unsigned char *, unsigned int *, unsigned char *, unsigned int,
R_RSA_PUBLIC_KEY *));
int RSAPrivateDecrypt PROTO_LIST
((unsigned char *, unsigned int *, unsigned char *, unsigned int,
R_RSA_PRIVATE_KEY *));
⑵ 什麼是RSA演算法,求簡單解釋。
RSA公鑰加密演算法是1977年由Ron Rivest、Adi Shamirh和LenAdleman在(美國麻省理工學院)開發的。RSA取名來自開發他們三者的名字。RSA是目前最有影響力的公鑰加密演算法,它能夠
抵抗到目前為止已知的所有密碼攻擊,已被ISO推薦為公鑰數據加密標准。RSA演算法基於一個十分簡單的數論事實:將兩個大素數相乘十分容易,但那時想要對其乘積進行因式分解卻極其困難,因此可以將乘積公開作為加密密鑰。由於進行的都是大數計算,使得RSA最快的情況也比DES慢上好幾倍,無論是軟體還是硬體實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。RSA的速度比對應同樣安全級別的對稱密碼演算法要慢1000倍左右。
基礎
大數分解和素性檢測——將兩個大素數相乘在計算上很容易實現,但將該乘積分解為兩個大素數因子的計算量是相當巨大的,以至於在實際計算中是不能實現的。
1.RSA密碼體制的建立:
(1)選擇兩個不同的大素數p和q;
(2)計算乘積n=pq和Φ(n)=(p-1)(q-1);
(3)選擇大於1小於Φ(n)的隨機整數e,使得gcd(e,Φ(n))=1;
(4)計算d使得de=1mod Φ(n);
(5)對每一個密鑰k=(n,p,q,d,e),定義加密變換為Ek(x)=xemodn,解密變換為Dk(x)=ydmodn,這里x,y∈Zn;
(6)以{e,n}為公開密鑰,{p,q,d}為私有密鑰。
2.RSA演算法實例:
下面用兩個小素數7和17來建立一個簡單的RSA演算法:
(1)選擇兩個素數p=7和q=17;
(2)計算n=pq=7 17=119,計算Φ(n)=(p-1)(q-1)=6 16=96;
(3)選擇一個隨機整數e=5,它小於Φ(n)=96並且於96互素;
(4)求出d,使得de=1mod96且d<96,此處求出d=77,因為 77 5=385=4 96+1;
(5)輸入明文M=19,計算19模119的5次冪,Me=195=66mod119,傳出密文C=66;(6)接收密文66,計算66模119的77次冪;Cd=6677≡19mod119得到明文19。
⑶ 如何用C++實現RSA演算法
RSA演算法介紹及java實現,其實java和c++差不多,參考一下吧
<一>基礎
RSA演算法非常簡單,概述如下:
找兩素數p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一個數e,要求滿足e<t並且e與t互素(就是最大公因數為1)
取d*e%t==1
這樣最終得到三個數: n d e
設消息為數M (M <n)
設c=(M**d)%n就得到了加密後的消息c
設m=(c**e)%n則 m == M,從而完成對c的解密。
註:**表示次方,上面兩式中的d和e可以互換。
在對稱加密中:
n d兩個數構成公鑰,可以告訴別人;
n e兩個數構成私鑰,e自己保留,不讓任何人知道。
給別人發送的信息使用e加密,只要別人能用d解開就證明信息是由你發送的,構成了簽名機制。
別人給你發送信息時使用d加密,這樣只有擁有e的你能夠對其解密。
rsa的安全性在於對於一個大數n,沒有有效的方法能夠將其分解
從而在已知n d的情況下無法獲得e;同樣在已知n e的情況下無法
求得d。
<二>實踐
接下來我們來一個實踐,看看實際的操作:
找兩個素數:
p=47
q=59
這樣
n=p*q=2773
t=(p-1)*(q-1)=2668
取e=63,滿足e<t並且e和t互素
用perl簡單窮舉可以獲得滿主 e*d%t ==1的數d:
C:\Temp>perl -e "foreach $i (1..9999){ print($i),last if $i*63%2668==1 }"
847
即d=847
最終我們獲得關鍵的
n=2773
d=847
e=63
取消息M=244我們看看
加密:
c=M**d%n = 244**847%2773
用perl的大數計算來算一下:
C:\Temp>perl -Mbigint -e "print 244**847%2773"
465
即用d對M加密後獲得加密信息c=465
解密:
我們可以用e來對加密後的c進行解密,還原M:
m=c**e%n=465**63%2773 :
C:\Temp>perl -Mbigint -e "print 465**63%2773"
244
即用e對c解密後獲得m=244 , 該值和原始信息M相等。
<三>字元串加密
把上面的過程集成一下我們就能實現一個對字元串加密解密的示例了。
每次取字元串中的一個字元的ascii值作為M進行計算,其輸出為加密後16進制
的數的字元串形式,按3位元組表示,如01F
代碼如下:
#!/usr/bin/perl -w
#RSA 計算過程學習程序編寫的測試程序
#watercloud 2003-8-12
#
use strict;
use Math::BigInt;
my %RSA_CORE = (n=>2773,e=>63,d=>847); #p=47,q=59
my $N=new Math::BigInt($RSA_CORE{n});
my $E=new Math::BigInt($RSA_CORE{e});
my $D=new Math::BigInt($RSA_CORE{d});
print "N=$N D=$D E=$E\n";
sub RSA_ENCRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$cmess);
for($i=0;$i < length($$r_mess);$i++)
{
$c=ord(substr($$r_mess,$i,1));
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($D,$N);
$c=sprintf "%03X",$C;
$cmess.=$c;
}
return \$cmess;
}
sub RSA_DECRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$dmess);
for($i=0;$i < length($$r_mess);$i+=3)
{
$c=substr($$r_mess,$i,3);
$c=hex($c);
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($E,$N);
$c=chr($C);
$dmess.=$c;
}
return \$dmess;
}
my $mess="RSA 娃哈哈哈~~~";
$mess=$ARGV[0] if @ARGV >= 1;
print "原始串:",$mess,"\n";
my $r_cmess = RSA_ENCRYPT(\$mess);
print "加密串:",$$r_cmess,"\n";
my $r_dmess = RSA_DECRYPT($r_cmess);
print "解密串:",$$r_dmess,"\n";
#EOF
測試一下:
C:\Temp>perl rsa-test.pl
N=2773 D=847 E=63
原始串:RSA 娃哈哈哈~~~
加密串:
解密串:RSA 娃哈哈哈~~~
C:\Temp>perl rsa-test.pl 安全焦點(xfocus)
N=2773 D=847 E=63
原始串:安全焦點(xfocus)
加密串:
解密串:安全焦點(xfocus)
<四>提高
前面已經提到,rsa的安全來源於n足夠大,我們測試中使用的n是非常小的,根本不能保障安全性,
我們可以通過RSAKit、RSATool之類的工具獲得足夠大的N 及D E。
通過工具,我們獲得1024位的N及D E來測試一下:
n=EC3A85F5005D
4C2013433B383B
A50E114705D7E2
BC511951
d=0x10001
e=DD28C523C2995
47B77324E66AFF2
789BD782A592D2B
1965
設原始信息
M=
完成這么大數字的計算依賴於大數運算庫,用perl來運算非常簡單:
A) 用d對M進行加密如下:
c=M**d%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x11111111111122222222222233
333333333, 0x10001,
D55EDBC4F0
6E37108DD6
);print $x->as_hex"
b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898
即用d對M加密後信息為:
c=b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898
B) 用e對c進行解密如下:
m=c**e%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x17b287be418c69ecd7c39227ab
5aa1d99ef3
0cb4764414
, 0xE760A
3C29954C5D
7324E66AFF
2789BD782A
592D2B1965, CD15F90
4F017F9CCF
DD60438941
);print $x->as_hex"
(我的P4 1.6G的機器上計算了約5秒鍾)
得到用e解密後的m= == M
C) RSA通常的實現
RSA簡潔幽雅,但計算速度比較慢,通常加密中並不是直接使用RSA 來對所有的信息進行加密,
最常見的情況是隨機產生一個對稱加密的密鑰,然後使用對稱加密演算法對信息加密,之後用
RSA對剛才的加密密鑰進行加密。
最後需要說明的是,當前小於1024位的N已經被證明是不安全的
自己使用中不要使用小於1024位的RSA,最好使用2048位的。
----------------------------------------------------------
一個簡單的RSA演算法實現JAVA源代碼:
filename:RSA.java
/*
* Created on Mar 3, 2005
*
* TODO To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
*/
import java.math.BigInteger;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.FileWriter;
import java.io.FileReader;
import java.io.BufferedReader;
import java.util.StringTokenizer;
/**
* @author Steve
*
* TODO To change the template for this generated type comment go to
* Window - Preferences - Java - Code Style - Code Templates
*/
public class RSA {
/**
* BigInteger.ZERO
*/
private static final BigInteger ZERO = BigInteger.ZERO;
/**
* BigInteger.ONE
*/
private static final BigInteger ONE = BigInteger.ONE;
/**
* Pseudo BigInteger.TWO
*/
private static final BigInteger TWO = new BigInteger("2");
private BigInteger myKey;
private BigInteger myMod;
private int blockSize;
public RSA (BigInteger key, BigInteger n, int b) {
myKey = key;
myMod = n;
blockSize = b;
}
public void encodeFile (String filename) {
byte[] bytes = new byte[blockSize / 8 + 1];
byte[] temp;
int tempLen;
InputStream is = null;
FileWriter writer = null;
try {
is = new FileInputStream(filename);
writer = new FileWriter(filename + ".enc");
}
catch (FileNotFoundException e1){
System.out.println("File not found: " + filename);
}
catch (IOException e1){
System.out.println("File not found: " + filename + ".enc");
}
/**
* Write encoded message to 'filename'.enc
*/
try {
while ((tempLen = is.read(bytes, 1, blockSize / 8)) > 0) {
for (int i = tempLen + 1; i < bytes.length; ++i) {
bytes[i] = 0;
}
writer.write(encodeDecode(new BigInteger(bytes)) + " ");
}
}
catch (IOException e1) {
System.out.println("error writing to file");
}
/**
* Close input stream and file writer
*/
try {
is.close();
writer.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}
public void decodeFile (String filename) {
FileReader reader = null;
OutputStream os = null;
try {
reader = new FileReader(filename);
os = new FileOutputStream(filename.replaceAll(".enc", ".dec"));
}
catch (FileNotFoundException e1) {
if (reader == null)
System.out.println("File not found: " + filename);
else
System.out.println("File not found: " + filename.replaceAll(".enc", "dec"));
}
BufferedReader br = new BufferedReader(reader);
int offset;
byte[] temp, toFile;
StringTokenizer st = null;
try {
while (br.ready()) {
st = new StringTokenizer(br.readLine());
while (st.hasMoreTokens()){
toFile = encodeDecode(new BigInteger(st.nextToken())).toByteArray();
System.out.println(toFile.length + " x " + (blockSize / 8));
if (toFile[0] == 0 && toFile.length != (blockSize / 8)) {
temp = new byte[blockSize / 8];
offset = temp.length - toFile.length;
for (int i = toFile.length - 1; (i <= 0) && ((i + offset) <= 0); --i) {
temp[i + offset] = toFile[i];
}
toFile = temp;
}
/*if (toFile.length != ((blockSize / 8) + 1)){
temp = new byte[(blockSize / 8) + 1];
System.out.println(toFile.length + " x " + temp.length);
for (int i = 1; i < temp.length; i++) {
temp[i] = toFile[i - 1];
}
toFile = temp;
}
else
System.out.println(toFile.length + " " + ((blockSize / 8) + 1));*/
os.write(toFile);
}
}
}
catch (IOException e1) {
System.out.println("Something went wrong");
}
/**
* close data streams
*/
try {
os.close();
reader.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}
/**
* Performs <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*
* @param base the base to be raised
* @param pow the power to which the base will be raisded
* @param mod the molar domain over which to perform this operation
* @return <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*/
public BigInteger encodeDecode(BigInteger base) {
BigInteger a = ONE;
BigInteger s = base;
BigInteger n = myKey;
while (!n.equals(ZERO)) {
if(!n.mod(TWO).equals(ZERO))
a = a.multiply(s).mod(myMod);
s = s.pow(2).mod(myMod);
n = n.divide(TWO);
}
return a;
}
}
⑷ 如何用C語言實現RSA演算法
RSA演算法它是第一個既能用於數據加密也能用於數字簽名的演算法。它易於理解和操作,也很流行。演算法的名字以發明者的名字
命名:Ron Rivest, Adi Shamir 和Leonard
Adleman。但RSA的安全性一直未能得到理論上的證明。它經歷了各種攻擊,至今未被完全攻破。
一、RSA演算法 :
首先, 找出三個數, p, q, r,
其中 p, q 是兩個相異的質數, r 是與 (p-1)(q-1) 互質的數
p, q, r 這三個數便是 private key
接著, 找出 m, 使得 rm == 1 mod (p-1)(q-1)
這個 m 一定存在, 因為 r 與 (p-1)(q-1) 互質, 用輾轉相除法就可以得到了
再來, 計算 n = pq
m, n 這兩個數便是 public key
編碼過程是, 若資料為 a, 將其看成是一個大整數, 假設 a < n
如果 a >= n 的話, 就將 a 表成 s 進位 (s <= n, 通常取 s = 2^t),
則每一位數均小於 n, 然後分段編碼
接下來, 計算 b == a^m mod n, (0 <= b < n),
b 就是編碼後的資料
解碼的過程是, 計算 c == b^r mod pq (0 <= c < pq),
於是乎, 解碼完畢 等會會證明 c 和 a 其實是相等的 :)
如果第三者進行竊聽時, 他會得到幾個數: m, n(=pq), b
他如果要解碼的話, 必須想辦法得到 r
所以, 他必須先對 n 作質因數分解
要防止他分解, 最有效的方法是找兩個非常的大質數 p, q,
使第三者作因數分解時發生困難
<定理>
若 p, q 是相異質數, rm == 1 mod (p-1)(q-1),
a 是任意一個正整數, b == a^m mod pq, c == b^r mod pq,
則 c == a mod pq
證明的過程, 會用到費馬小定理, 敘述如下:
m 是任一質數, n 是任一整數, 則 n^m == n mod m
(換另一句話說, 如果 n 和 m 互質, 則 n^(m-1) == 1 mod m)
運用一些基本的群論的知識, 就可以很容易地證出費馬小定理的
<證明>
因為 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整數
因為在 molo 中是 preserve 乘法的
(x == y mod z and u == v mod z => xu == yv mod z),
所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq
1. 如果 a 不是 p 的倍數, 也不是 q 的倍數時,
則 a^(p-1) == 1 mod p (費馬小定理) => a^(k(p-1)(q-1)) == 1 mod p
a^(q-1) == 1 mod q (費馬小定理) => a^(k(p-1)(q-1)) == 1 mod q
所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1 => pq | a^(k(p-1)(q-1)) - 1
即 a^(k(p-1)(q-1)) == 1 mod pq
=> c == a^(k(p-1)(q-1)+1) == a mod pq
2. 如果 a 是 p 的倍數, 但不是 q 的倍數時,
則 a^(q-1) == 1 mod q (費馬小定理)
=> a^(k(p-1)(q-1)) == 1 mod q
=> c == a^(k(p-1)(q-1)+1) == a mod q
=> q | c - a
因 p | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod p
=> p | c - a
所以, pq | c - a => c == a mod pq
3. 如果 a 是 q 的倍數, 但不是 p 的倍數時, 證明同上
4. 如果 a 同時是 p 和 q 的倍數時,
則 pq | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod pq
=> pq | c - a
=> c == a mod pq
Q.E.D.
這個定理說明 a 經過編碼為 b 再經過解碼為 c 時, a == c mod n (n = pq)
但我們在做編碼解碼時, 限制 0 <= a < n, 0 <= c < n,
所以這就是說 a 等於 c, 所以這個過程確實能做到編碼解碼的功能
二、RSA 的安全性
RSA的安全性依賴於大數分解,但是否等同於大數分解一直未能得到理論上的證明,因為沒有證明破解
RSA就一定需要作大數分解。假設存在一種無須分解大數的演算法,那它肯定可以修改成為大數分解演算法。目前, RSA
的一些變種演算法已被證明等價於大數分解。不管怎樣,分解n是最顯然的攻擊方法。現在,人們已能分解多個十進制位的大素數。因此,模數n
必須選大一些,因具體適用情況而定。
三、RSA的速度
由於進行的都是大數計算,使得RSA最快的情況也比DES慢上倍,無論是軟體還是硬體實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。
四、RSA的選擇密文攻擊
RSA在選擇密文攻擊面前很脆弱。一般攻擊者是將某一信息作一下偽裝( Blind),讓擁有私鑰的實體簽署。然後,經過計算就可得到它所想要的信息。實際上,攻擊利用的都是同一個弱點,即存在這樣一個事實:乘冪保留了輸入的乘法結構:
( XM )^d = X^d *M^d mod n
前面已經提到,這個固有的問題來自於公鑰密碼系統的最有用的特徵--每個人都能使用公鑰。但從演算法上無法解決這一問題,主要措施有兩條:一條是採用好的公
鑰協議,保證工作過程中實體不對其他實體任意產生的信息解密,不對自己一無所知的信息簽名;另一條是決不對陌生人送來的隨機文檔簽名,簽名時首先使用
One-Way HashFunction 對文檔作HASH處理,或同時使用不同的簽名演算法。在中提到了幾種不同類型的攻擊方法。
五、RSA的公共模數攻擊
若系統中共有一個模數,只是不同的人擁有不同的e和d,系統將是危險的。最普遍的情況是同一信息用不同的公鑰加密,這些公鑰共模而且互質,那末該信息無需私鑰就可得到恢復。設P為信息明文,兩個加密密鑰為e1和e2,公共模數是n,則:
C1 = P^e1 mod n
C2 = P^e2 mod n
密碼分析者知道n、e1、e2、C1和C2,就能得到P。
因為e1和e2互質,故用Euclidean演算法能找到r和s,滿足:
r * e1 + s * e2 = 1
假設r為負數,需再用Euclidean演算法計算C1^(-1),則
( C1^(-1) )^(-r) * C2^s = P mod n
另外,還有其它幾種利用公共模數攻擊的方法。總之,如果知道給定模數的一對e和d,一是有利於攻擊者分解模數,一是有利於攻擊者計算出其它成對的e』和d』,而無需分解模數。解決辦法只有一個,那就是不要共享模數n。
RSA的小指數攻擊。 有一種提高 RSA速度的建議是使公鑰e取較小的值,這樣會使加密變得易於實現,速度有
所提高。但這樣作是不安全的,對付辦法就是e和d都取較大的值。
RSA演算法是
第一個能同時用於加密和數字簽名的演算法,也易於理解和操作。RSA是被研究得最廣泛的公鑰演算法,從提出到現在已近二十年,經歷了各種攻擊的考驗,逐漸為人
們接受,普遍認為是目前最優秀的公鑰方案之一。RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價。即RSA
的重大缺陷是無法從理論上把握它的保密性能
如何,而且密碼學界多數人士傾向於因子分解不是NPC問題。
RSA的缺點主要有:A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次一密。B)分組長度太大,為保證安全性,n 至少也要 600
bits
以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;且隨著大數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。目
前,SET( Secure Electronic Transaction )協議中要求CA採用比特長的密鑰,其他實體使用比特的密鑰。
C語言實現
#include <stdio.h>
int candp(int a,int b,int c)
{ int r=1;
b=b+1;
while(b!=1)
{
r=r*a;
r=r%c;
b--;
}
printf("%d\n",r);
return r;
}
void main()
{
int p,q,e,d,m,n,t,c,r;
char s;
printf("please input the p,q: ");
scanf("%d%d",&p,&q);
n=p*q;
printf("the n is %3d\n",n);
t=(p-1)*(q-1);
printf("the t is %3d\n",t);
printf("please input the e: ");
scanf("%d",&e);
if(e<1||e>t)
{
printf("e is error,please input again: ");
scanf("%d",&e);
}
d=1;
while(((e*d)%t)!=1) d++;
printf("then caculate out that the d is %d\n",d);
printf("the cipher please input 1\n");
printf("the plain please input 2\n");
scanf("%d",&r);
switch(r)
{
case 1: printf("input the m: "); /*輸入要加密的明文數字*/
scanf("%d",&m);
c=candp(m,e,n);
printf("the cipher is %d\n",c);break;
case 2: printf("input the c: "); /*輸入要解密的密文數字*/
scanf("%d",&c);
m=candp(c,d,n);
printf("the cipher is %d\n",m);break;
}
getch();
}
⑸ 如何用C語言實現RSA演算法
上學期交的作業,已通過老師在運行時間上的測試
#include <stdio.h>
#include <stdlib.h>
unsigned long prime1,prime2,ee;
unsigned long *kzojld(unsigned long p,unsigned long q) //擴展歐幾里得演算法求模逆
{
unsigned long i=0,a=1,b=0,c=0,d=1,temp,mid,ni[2];
mid=p;
while(mid!=1)
{
while(p>q)
{p=p-q; mid=p;i++;}
a=c*(-1)*i+a;b=d*(-1)*i+b;
temp=a;a=c;c=temp;
temp=b;b=d;d=temp;
temp=p;p=q;q=temp;
i=0;
}
ni[0]=c;ni[1]=d;
return(ni);
}
unsigned long momi(unsigned long a,unsigned long b,unsigned long p) //模冪演算法
{
unsigned long c;
c=1;
if(a>p) a=a%p;
if(b>p) b=b%(p-1);
while(b!=0)
{
while(b%2==0)
{
b=b/2;
a=(a*a)%p;
}
b=b-1;
c=(a*c)%p;
}
return(c);
}
void RSAjiami() //RSA加密函數
{
unsigned long c1,c2;
unsigned long m,n,c;
n=prime1*prime2;
system("cls");
printf("Please input the message:\n");
scanf("%lu",&m);getchar();
c=momi(m,ee,n);
printf("The cipher is:%lu",c);
return;
}
void RSAjiemi() //RSA解密函數
{
unsigned long m1,m2,e,d,*ni;
unsigned long c,n,m,o;
o=(prime1-1)*(prime2-1);
n=prime1*prime2;
system("cls");
printf("Please input the cipher:\n");
scanf("%lu",&c);getchar();
ni=kzojld(ee,o);
d=ni[0];
m=momi(c,d,n);
printf("The original message is:%lu",m);
return;
}
void main()
{ unsigned long m;
char cho;
printf("Please input the two prime you want to use:\n");
printf("P=");scanf("%lu",&prime1);getchar();
printf("Q=");scanf("%lu",&prime2);getchar();
printf("E=");scanf("%lu",&ee);getchar();
if(prime1<prime2)
{m=prime1;prime1=prime2;prime2=m;}
while(1)
{
system("cls");
printf("\t*******RSA密碼系統*******\n");
printf("Please select what do you want to do:\n");
printf("1.Encrpt.\n");
printf("2.Decrpt.\n");
printf("3.Exit.\n");
printf("Your choice:");
scanf("%c",&cho);getchar();
switch(cho)
{ case '1':RSAjiami();break;
case '2':RSAjiemi();break;
case '3':exit(0);
default:printf("Error input.\n");break;
}
getchar();
}
}
⑹ 如何用C語言程序實現RSA演算法
#include "stdafx.h"
#include<math.h>
#include<stdio.h>
int isP(int m)
{
int i;
for(i=2;i<m;i++)
if(m % i==0)return 0;
return 1;
}
int num(int m,int k)
{
int i=0;
for(m=m;k>0;m++)
if(isP(m))
{
k--;
return m;
}
}
int main(int argc, char* argv[])
{
int P,Q,E,D,i,k,fn,c=0,j=0,t=1,f1=1,l=2;
int a[10];
long N0,N1;
long PT,CT,N;
printf("請輸入第一個數:");
scanf("%d",&P);
P=num(P,1);
printf("請輸入比第一次大的數:");
scanf("%d",&Q);
Q=num(Q,1);
N=P*Q;
N1=(P-1)*(Q-1);
N0=N1;
while(N1>=3)
{
while(N1%l!=0)
{
l++;
}
a[j++]=l;
N1=N1/l;
}
printf("請輸入一個奇數E,若E不合適,系統將會找一個比E大的合適值:");
scanf("%d",&E);
for(i=E;t>0;i=i+2)
{
for(k=0;k<j+1;k++)
{
if(E%a[k-1]==0) break;
else if(k==j)
{
t--;
}
E=i;
}
}
for(k=1; ;k++)
{
if((N0*k+1)%E==0)
{
D=(N0*k+1)/E;
if((D*E)%N0==1)
break;
}
}
printf("請輸入明文:");
scanf("%ld",&PT);
for(i=1;i<=E;i++)
{
fn=(f1*PT)%N;
f1=fn;
CT=fn;
}
f1=1;
for(i=1;i<=D;i++)
{
fn=(f1*CT)%N;
f1=fn;
PT=fn;
}
printf("P=%d,Q=%d\n",P,Q);
for(k=0;k<j;k++)
printf("%d ",a[k]);
printf("\n");
printf("E=%d,D=%d,N=%ld\n",E,D,N);
printf("密碼是:%ld\n",CT);
printf("明文是:%ld\n",PT);
return 0;
}
⑺ rsa演算法c語言實現
程序修改如下:
(主要是你的循環寫的不對,輸入的字元應該-'0'才能與正常的數字對應)
#include<stdio.h>
#include<math.h>
int
candp(int
a,int
b,int
c)
{int
r=1;
int
s;
int
i=1;
for(i=1;i<=b;i++)r=r*a;
printf("%d\
",r);
s=r%c;
printf("%d\
",s);
return
s;}
void
main()
{
int
p,q,e,d,m,n,t,c,r
;
char
s;
printf("please
input
the
p,q:");
scanf("%d%d",&p,&q);
n=p*q;
t=(p-1)*(q-1);
printf("the
n
is
%12d\
",n);
printf("please
input
the
e:");
scanf("%d",&e);
while(e<1||e>n)
//此處修改為while循環
{
printf("e
is
error,please
input
again:");
scanf("%d",&e);
}
d=1;
while(((e*d)%t)!=1)
d++;
printf("then
caculate
out
that
the
d
is
%d\
",d);
printf("the
cipher
please
input
1\
");
printf("the
plain
please
input
2\
");
scanf("%c",&s);
while((s-'0')!=1&&(s-'0')!=2)
//消除後面的getchar()
此處增加while循環注意括弧內的字元
{scanf("%c",&s);}
switch(s-'0')
{
case
1:printf("intput
the
m:");
scanf("%d",&m);
c=candp(m,e,n);
printf("the
plain
is
%d\
",c);break;
case
2:printf("input
the
c:");
scanf("%d",&c);
m=candp(c,d,n);
printf("the
cipher
is
%8d\
",m);
break;
}
}
⑻ rsa演算法原理
RSA演算法是最常用的非對稱加密演算法,它既能用於加密,也能用於數字簽名。RSA的安全基於大數分解的難度。其公鑰和私鑰是一對大素數(100到200位十進制數或更大)的函數。從一個公鑰和密文恢復出明文的難度,等價於分解兩個大素數之積。
我們可以通過一個簡單的例子來理解RSA的工作原理。為了便於計算。在以下實例中只選取小數值的素數p,q,以及e,假設用戶A需要將明文「key」通過RSA加密後傳遞給用戶B,過程如下:設計公私密鑰(e,n)和(d,n)。
令p=3,q=11,得出n=p×q=3×11=33;f(n)=(p-1)(q-1)=2×10=20;取e=3,(3與20互質)則e×d≡1 mod f(n),即3×d≡1 mod 20。通過試算我們找到,當d=7時,e×d≡1 mod f(n)同餘等式成立。因此,可令d=7。從而我們可以設計出一對公私密鑰,加密密鑰(公鑰)為:KU =(e,n)=(3,33),解密密鑰(私鑰)為:KR =(d,n)=(7,33)。
英文數字化。將明文信息數字化,並將每塊兩個數字分組。假定明文英文字母編碼表為按字母順序排列數值。則得到分組後的key的明文信息為:11,05,25。
明文加密。用戶加密密鑰(3,33) 將數字化明文分組信息加密成密文。由C≡Me(mod n)得:
C1(密文)≡M1(明文)^e (mod n) == 11≡11^3 mod 33 ;
C2(密文)≡M2(明文)^e (mod n) == 26≡05^3 mod 33;
C3(密文)≡M3(明文)^e (mod n) == 16≡25^3 mod 33;
所以密文為11.26.16。
密文解密。用戶B收到密文,若將其解密,只需要計算,即:
M1(明文)≡C1(密文)^d (mod n) == 11≡11^7 mod 33;
M2(明文)≡C2(密文)^d (mod n) == 05≡26^7 mod 33;
M3(明文)≡C3(密文)^d (mod n) == 25≡16^7 mod 33;
轉成明文11.05.25。根據上面的編碼表將其轉換為英文,我們又得到了恢復後的原文「key」。
當然,實際運用要比這復雜得多,由於RSA演算法的公鑰私鑰的長度(模長度)要到1024位甚至2048位才能保證安全,因此,p、q、e的選取、公鑰私鑰的生成,加密解密模指數運算都有一定的計算程序,需要仰仗計算機高速完成。
⑼ 如何用C++實現RSA演算法
基礎
RSA演算法非常簡單,概述如下:
找兩素數p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一個數e,要求滿足eperl -Mbigint -e "print 465**63%2773"
244
即用e對c解密後獲得m=244 , 該值和原始信息M相等.
字元串加密
把上面的過程集成一下我們就能實現一個對字元串加密解密的示例了.
每次取字元串中的一個字元的ascii值作為M進行計算,其輸出為加密後16進制
的數的字元串形式,按3位元組表示,如01F
代碼如下:
#!/usr/bin/perl -w
#RSA 計算過程學習程序編寫的測試程序
#watercloud 2003-8-12
#
use strict;
use Math::BigInt;
my %RSA_CORE = (n=>2773,e=>63,d=>847); #p=47,q=59
my $N=new Math::BigInt($RSA_CORE{n});