網演算法
❶ 神經網路演算法的三大類分別是
神經網路演算法的三大類分別是:
1、前饋神經網路:
這是實際應用中最常見的神經網路類型。第一層是輸入,最後一層是輸出。如果有多個隱藏層,我們稱之為「深度」神經網路。他們計算出一系列改變樣本相似性的變換。各層神經元的活動是前一層活動的非線性函數。
2、循環網路:
循環網路在他們的連接圖中定向了循環,這意味著你可以按照箭頭回到你開始的地方。他們可以有復雜的動態,使其很難訓練。他們更具有生物真實性。
循環網路的目的是用來處理序列數據。在傳統的神經網路模型中,是從輸入層到隱含層再到輸出層,層與層之間是全連接的,每層之間的節點是無連接的。但是這種普通的神經網路對於很多問題卻無能無力。
循環神經網路,即一個序列當前的輸出與前面的輸出也有關。具體的表現形式為網路會對前面的信息進行記憶並應用於當前輸出的計算中,即隱藏層之間的節點不再無連接而是有連接的,並且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。
3、對稱連接網路:
對稱連接網路有點像循環網路,但是單元之間的連接是對稱的(它們在兩個方向上權重相同)。比起循環網路,對稱連接網路更容易分析。
這個網路中有更多的限制,因為它們遵守能量函數定律。沒有隱藏單元的對稱連接網路被稱為「Hopfield 網路」。有隱藏單元的對稱連接的網路被稱為玻爾茲曼機。
(1)網演算法擴展閱讀:
應用及發展:
心理學家和認知科學家研究神經網路的目的在於探索人腦加工、儲存和搜索信息的機制,弄清人腦功能的機理,建立人類認知過程的微結構理論。
生物學、醫學、腦科學專家試圖通過神經網路的研究推動腦科學向定量、精確和理論化體系發展,同時也寄希望於臨床醫學的新突破;信息處理和計算機科學家研究這一問題的目的在於尋求新的途徑以解決不能解決或解決起來有極大困難的大量問題,構造更加逼近人腦功能的新一代計算機。
❷ 計算機網路演算法
暈 這答案和題不對
10.0.0.0 255.224.0.0
MASK 224 換成1110000是3個1 則是2的3次方是 8 子網 8-2=6是可用子網
`個256/8=32 主機是
可用30個 256-224=32
10.0.0.0 10.1.0.0 10.30.255.255
10.32.0.0 10.33.0.0 10.62.255.255
下面自己算了
不懂就網路吧
❸ 神經網路演算法是什麼
Introction
--------------------------------------------------------------------------------
神經網路是新技術領域中的一個時尚詞彙。很多人聽過這個詞,但很少人真正明白它是什麼。本文的目的是介紹所有關於神經網路的基本包括它的功能、一般結構、相關術語、類型及其應用。
「神經網路」這個詞實際是來自於生物學,而我們所指的神經網路正確的名稱應該是「人工神經網路(ANNs)」。在本文,我會同時使用這兩個互換的術語。
一個真正的神經網路是由數個至數十億個被稱為神經元的細胞(組成我們大腦的微小細胞)所組成,它們以不同方式連接而型成網路。人工神經網路就是嘗試模擬這種生物學上的體系結構及其操作。在這里有一個難題:我們對生物學上的神經網路知道的不多!因此,不同類型之間的神經網路體系結構有很大的不同,我們所知道的只是神經元基本的結構。
The neuron
--------------------------------------------------------------------------------
雖然已經確認在我們的大腦中有大約50至500種不同的神經元,但它們大部份都是基於基本神經元的特別細胞。基本神經元包含有synapses、soma、axon及dendrites。Synapses負責神經元之間的連接,它們不是直接物理上連接的,而是它們之間有一個很小的空隙允許電子訊號從一個神經元跳到另一個神經元。然後這些電子訊號會交給soma處理及以其內部電子訊號將處理結果傳遞給axon。而axon會將這些訊號分發給dendrites。最後,dendrites帶著這些訊號再交給其它的synapses,再繼續下一個循環。
如同生物學上的基本神經元,人工的神經網路也有基本的神經元。每個神經元有特定數量的輸入,也會為每個神經元設定權重(weight)。權重是對所輸入的資料的重要性的一個指標。然後,神經元會計算出權重合計值(net value),而權重合計值就是將所有輸入乘以它們的權重的合計。每個神經元都有它們各自的臨界值(threshold),而當權重合計值大於臨界值時,神經元會輸出1。相反,則輸出0。最後,輸出會被傳送給與該神經元連接的其它神經元繼續剩餘的計算。
Learning
--------------------------------------------------------------------------------
正如上述所寫,問題的核心是權重及臨界值是該如何設定的呢?世界上有很多不同的訓練方式,就如網路類型一樣多。但有些比較出名的包括back-propagation, delta rule及Kohonen訓練模式。
由於結構體系的不同,訓練的規則也不相同,但大部份的規則可以被分為二大類別 - 監管的及非監管的。監管方式的訓練規則需要「教師」告訴他們特定的輸入應該作出怎樣的輸出。然後訓練規則會調整所有需要的權重值(這是網路中是非常復雜的),而整個過程會重頭開始直至數據可以被網路正確的分析出來。監管方式的訓練模式包括有back-propagation及delta rule。非監管方式的規則無需教師,因為他們所產生的輸出會被進一步評估。
Architecture
--------------------------------------------------------------------------------
在神經網路中,遵守明確的規則一詞是最「模糊不清」的。因為有太多不同種類的網路,由簡單的布爾網路(Perceptrons),至復雜的自我調整網路(Kohonen),至熱動態性網路模型(Boltzmann machines)!而這些,都遵守一個網路體系結構的標准。
一個網路包括有多個神經元「層」,輸入層、隱蔽層及輸出層。輸入層負責接收輸入及分發到隱蔽層(因為用戶看不見這些層,所以見做隱蔽層)。這些隱蔽層負責所需的計算及輸出結果給輸出層,而用戶則可以看到最終結果。現在,為免混淆,不會在這里更深入的探討體系結構這一話題。對於不同神經網路的更多詳細資料可以看Generation5 essays
盡管我們討論過神經元、訓練及體系結構,但我們還不清楚神經網路實際做些什麼。
The Function of ANNs
--------------------------------------------------------------------------------
神經網路被設計為與圖案一起工作 - 它們可以被分為分類式或聯想式。分類式網路可以接受一組數,然後將其分類。例如ONR程序接受一個數字的影象而輸出這個數字。或者PPDA32程序接受一個坐標而將它分類成A類或B類(類別是由所提供的訓練決定的)。更多實際用途可以看Applications in the Military中的軍事雷達,該雷達可以分別出車輛或樹。
聯想模式接受一組數而輸出另一組。例如HIR程序接受一個『臟』圖像而輸出一個它所學過而最接近的一個圖像。聯想模式更可應用於復雜的應用程序,如簽名、面部、指紋識別等。
The Ups and Downs of Neural Networks
--------------------------------------------------------------------------------
神經網路在這個領域中有很多優點,使得它越來越流行。它在類型分類/識別方面非常出色。神經網路可以處理例外及不正常的輸入數據,這對於很多系統都很重要(例如雷達及聲波定位系統)。很多神經網路都是模仿生物神經網路的,即是他們仿照大腦的運作方式工作。神經網路也得助於神經系統科學的發展,使它可以像人類一樣准確地辨別物件而有電腦的速度!前途是光明的,但現在...
是的,神經網路也有些不好的地方。這通常都是因為缺乏足夠強大的硬體。神經網路的力量源自於以並行方式處理資訊,即是同時處理多項數據。因此,要一個串列的機器模擬並行處理是非常耗時的。
神經網路的另一個問題是對某一個問題構建網路所定義的條件不足 - 有太多因素需要考慮:訓練的演算法、體系結構、每層的神經元個數、有多少層、數據的表現等,還有其它更多因素。因此,隨著時間越來越重要,大部份公司不可能負擔重復的開發神經網路去有效地解決問題。
NN 神經網路,Neural Network
ANNs 人工神經網路,Artificial Neural Networks
neurons 神經元
synapses 神經鍵
self-organizing networks 自我調整網路
networks modelling thermodynamic properties 熱動態性網路模型
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
網格演算法我沒聽說過
好像只有網格計算這個詞
網格計算是伴隨著互聯網技術而迅速發展起來的,專門針對復雜科學計算的新型計算模式。這種計算模式是利用互聯網把分散在不同地理位置的電腦組織成一個「虛擬的超級計算機」,其中每一台參與計算的計算機就是一個「節點」,而整個計算是由成千上萬個「節點」組成的「一張網格」, 所以這種計算方式叫網格計算。這樣組織起來的「虛擬的超級計算機」有兩個優勢,一個是數據處理能力超強;另一個是能充分利用網上的閑置處理能力。簡單地講,網格是把整個網路整合成一台巨大的超級計算機,實現計算資源、存儲資源、數據資源、信息資源、知識資源、專家資源的全面共享。
❹ 有人了解社會網路演算法的嗎
社會網路演算法還是很復雜的,這個要根據每個行業的不同特點來進行計算,才能夠得出具體的詳細數據。
❺ 什麼是神經網路演算法
神經網路是新技術領域中的一個時尚詞彙。很多人聽過這個詞,但很少人真正明白它是什麼。本文的目的是介紹所有關於神經網路的基本包括它的功能、一般結構、相關術語、類型及其應用。
「神經網路」這個詞實際是來自於生物學,而我們所指的神經網路正確的名稱應該是「人工神經網路(ANNs)」。在本文,我會同時使用這兩個互換的術語。
一個真正的神經網路是由數個至數十億個被稱為神經元的細胞(組成我們大腦的微小細胞)所組成,它們以不同方式連接而型成網路。人工神經網路就是嘗試模擬這種生物學上的體系結構及其操作。在這里有一個難題:我們對生物學上的神經網路知道的不多!因此,不同類型之間的神經網路體系結構有很大的不同,我們所知道的只是神經元基本的結構。
❻ 互聯網演算法代表人物外賣員,互聯網時代會被叫停嗎
互聯網時代就是這么神奇,最近有一個問題的討論,熱搜就是外賣平台提出,能不能等外賣員5分鍾說這個是人性很理解,但是很多人尤其是做程序的學計算機的,最終得到一個結論,就是他們平台的外面上訪有問題,所以他們要把這個鍋甩給消費者。
直覺這個好還是不好,顯然有人說的好,有人說的不好,因為萬事萬物都得從辯證法的角度去出發,咱們在這集說的好,就說的不好,就沒有什麼意義啊,我們最終可以得到的一個結論就是互聯網時代會不斷的發展並且越來越完善,那好處發揮了越來越多,壞處盡可能的規避,結束是不可能的。
❼ 演算法對網路安全來說重要嗎
我認為,這應該是非常重要的吧。因為網路安全始終是大家非常關注的一個話題。
網路的黃金時代:
其實怎麼說呢。我們這個時代真的是網路的一個黃金時代。網路真的是發展的非常的快,所以網路安全也是非常的重要。在網路時代,網路給社會帶來了前所未有的機遇和挑戰。網路的正常運行給社會帶來了巨大的進步和財富,網路的不安全也會帶來意想不到的災難和損失。網路正在加速覆蓋范圍的擴大,加速滲透到各個領域,加速傳統規則的變化。要努力提高網路安全,趨利避害,與互聯網時代同步前進。
總結:總的來說就是演算法,對網路安全來說是非常的重要的。演算法的精準可以避免許多的漏洞。
❽ 網格演算法是什麼
網格化是解釋流程中構造成圖的比較重要的一步,演算法種類也比較多。在SMT中就列出了許多種演算法供選擇,當然每種演算法有自己的特點和適應性,所以在真正網格化操作時為了提高預測的精度需要選擇合適的演算法。如下為SMT中提供的幾種演算法簡單對比。
Collocated Cokriging
協克里金演算法
層位、斷層、網格、XYZ數據、層段屬性、鑽井分層(較好用於井數據與地震屬性匹配)
Cubic Spline
樣條插值
三維的層位、網格、斷層、XYZ數據
Flex Gridding
彈性網格化
層位、斷層、網格、XYZ數據、層段屬性、鑽井分層
Gradient Projection
梯度投影
二維、三維的層位、網格、斷層、等值線、XYZ數據(較好用於構造數據)
Inverse Distance to a Power
反距離加權
二維、三維的層位、網格、斷層、等值線、XYZ數據、層段屬性、鑽井分層(較好用於速度成圖)
Natural Neighbor
自然鄰點插值
XYZ數據、層段屬性、鑽井分層(較好用於非地震類數據)
Ordinary Kriging
普通克里金插值
XYZ數據、層段屬性、鑽井分層(較好用於滲透率成圖)
Simple Kriging
簡單克里金插值
XYZ數據、層段屬性、鑽井分層(較好用於滲透率成圖)
Universal Kriging
廣義克里金
XYZ數據、層段屬性、鑽井分層(較好用於滲透率圖件和有整體變化趨勢的數據)
這里對兩種演算法做個介紹:
1、SMT8.2版本中新出現的Flex Gridding 彈性網格化演算法
該演算法利用差分方程系統原理,產生的網格節點處數值需要滿足以下兩種原則:
. 內插面與實際數據產生的趨勢面一致或者很接近;
. 該面的RMS曲率值盡可能小。
如果在一個節點處應用每一種方程都計算差分的話,而且將鄰近點都考慮在內的話,其結果會形成一個組合,但越遠的點影響越弱、越不直接。因此,在計算時都假設鄰近節點為常數,每個方程就會得到一個網格數值。如此重復應用於其它節點處。這樣可以解決單個節點的問題,我們將方程稱為「調和器」。該方法產生的曲率面會趨於最小,而且逼近實際數據。
由於每個節點在進行調和濾波計算時都需要一個局部的調和器,網格節點多時就會有許多次迭代計算過程。迭代次數差不多為N的e次方(N為數據列/行數)。因此初始網格一般時非常小的。
2、Collocated Cokriging 協克里金插值
協克里金插值與克里金演算法原理基本一樣,都是通過差異比較來計算網格數值,同時產生方差圖,但是該方法假設事件都是多屬性的,可以利用第二種協數據(如層位)輔助第一種主數據進行稀疏數據點(如井控制點)的內插。
協克里金插值利用第二種協數據指導主數據的網格化,可以提高克里金插值的准確性。該演算法中斷層可以參與運算。在使用時用稀疏數據(如井數據)作為主數據,另外一種密集分布數據作為協數據。
在具體計算中網格點處主數據有值的地方都用主數據的值,如果網格點處沒有值時則用協數據作為輔助進行計算。並且會同時產生一個方差模型。
最終的協方差網格結果為主數據進行克里金插值,同時受協數據影響。
因此,如果主數據為密集分布的數據,計算產生的網格也會接近主數據。例如,數據中包括測井解釋的孔隙度數據(稀疏分布),從地震屬性中預測的偽孔隙度數據(密集分布)。數據單位是一致的,但來源可能不一樣。
對於這種情況下協克里金插值就是一種很好的網格演算法,還可以建立起振幅與孔隙度之間的關系。
在應用時有以下注意事項:
1)在主數據為稀疏分布,協數據偽密集分布時應用效果最好。
2)如果主數據與協數據之間有一定聯系的話效果最好。
3)數據類型最好一致。
❾ 神經網路演算法原理
一共有四種演算法及原理,如下所示:
1、自適應諧振理論(ART)網路
自適應諧振理論(ART)網路具有不同的方案。一個ART-1網路含有兩層一個輸入層和一個輸出層。這兩層完全互連,該連接沿著正向(自底向上)和反饋(自頂向下)兩個方向進行。
2、學習矢量量化(LVQ)網路
學習矢量量化(LVQ)網路,它由三層神經元組成,即輸入轉換層、隱含層和輸出層。該網路在輸入層與隱含層之間為完全連接,而在隱含層與輸出層之間為部分連接,每個輸出神經元與隱含神經元的不同組相連接。
3、Kohonen網路
Kohonen網路或自組織特徵映射網路含有兩層,一個輸入緩沖層用於接收輸入模式,另一個為輸出層,輸出層的神經元一般按正則二維陣列排列,每個輸出神經元連接至所有輸入神經元。連接權值形成與已知輸出神經元相連的參考矢量的分量。
4、Hopfield網路
Hopfield網路是一種典型的遞歸網路,這種網路通常只接受二進制輸入(0或1)以及雙極輸入(+1或-1)。它含有一個單層神經元,每個神經元與所有其他神經元連接,形成遞歸結構。
(9)網演算法擴展閱讀:
人工神經網路演算法的歷史背景:
該演算法系統是 20 世紀 40 年代後出現的。它是由眾多的神經元可調的連接權值連接而成,具有大規模並行處理、分布式信息存儲、良好的自組織自學習能力等特點。
BP演算法又稱為誤差反向傳播演算法,是人工神經網路中的一種監督式的學習演算法。BP 神經網路演算法在理論上可以逼近任意函數,基本的結構由非線性變化單元組成,具有很強的非線性映射能力。
而且網路的中間層數、各層的處理單元數及網路的學習系數等參數可根據具體情況設定,靈活性很大,在優化、信號處理與模式識別、智能控制、故障診斷等許 多領域都有著廣泛的應用前景。
❿ 不銹鋼防盜網演算法
不銹鋼防盜網成本計算方法為:
每平方防盜網:方形鋼筋網的成本,一元每個,圓形鋼筋網成本1.5元每個,耗材每千克五元,人工費15元,稅金為總成本的3%。
簡單概括就是:
每平方不銹鋼防盜網成本=方形個數x1元+圓形個數x1.5元+耗材重量x5元+人工x15元+稅金3%。
一般不銹鋼防盜網可分好多,材質及厚度有所不同,一般用來做防盜網的材質:201、202、304,201與202的價位差不多,方管0.8圓管0.6的80,304方管0.8圓管0.6的130左右。