當前位置:首頁 » 操作系統 » 數據挖掘演算法及應用pdf

數據挖掘演算法及應用pdf

發布時間: 2022-04-21 11:19:26

Ⅰ 《數據挖掘概念與技術(原書第3版)》pdf下載在線閱讀,求百度網盤雲資源

《數據挖掘》((美)Jiawei Han)電子書網盤下載免費在線閱讀

資源鏈接:

鏈接:https://pan..com/s/1Nla-Mw4lQs5cgYnQZ-o7Ag

提取碼:1qkr

書名:數據挖掘

作者:(美)Jiawei Han

譯者:范明

豆瓣評分:7.9

出版社:機械工業出版社

出版年份:2012-8

頁數:468

內容簡介:數據挖掘領域最具里程碑意義的經典著作

完整全面闡述該領域的重要知識和技術創新

這是一本數據挖掘和知識發現的優秀教材,結構合理、條理清晰。本書既保留了相當篇幅講述數據挖掘的基本概念和方法,又增加了若干章節介紹數據挖掘領域最新的技術和發展,因此既適合初學者學習又適合專業人員和實踐者參考。本書視角廣闊、資料翔實、內容全面,能夠為有意深入研究相關技術的讀者提供足夠的參考和支持。總之, 強烈推薦從高年級本科生到專業人員和實踐者都來閱讀這本書!

—— 美國CHOICE雜志

這是一本非常優秀的數據挖掘教材,最新的第3版反映了數據挖掘領域的最新發展和變化。書中增加了2006年第2版以來最新的引用資料,新增小節討論可視化、模式挖掘以及最新的聚類方法。本書配有豐富及完善的教輔支持,包括配套網站、大量的習題集以及習題答案等。盡管這是一本數據挖掘的教材,但對於讀者沒有太高的要求,只需要讀者具有少量編程經驗並了解基本的資料庫設計和統計分析知識。還有兩點值得注意:第一,本書的參考書目是關於了解數據挖掘研究的非常好的參考列表;第二,書中的索引非常全面和有效,能夠幫助讀者很容易地定位相關知識點。其他學科的研究人員和分析人員,例如,流行病學家、金融分析師、心理測量研究人員,也會發現本書非常有用。

—— Computing Reviews

當代商業和科學領域大量激增的數據量要求我們採用更加復雜和精細的工具來進行數據分析、處理和挖掘。盡管近年來數據挖掘技術取得的長足進展使得我們廣泛收集數據越來越容易,但技術的發展依然難以匹配爆炸性的數據增長以及隨之而來的大量數據處理需求,因此我們比以往更加迫切地需要新技術和自動化工具來幫助我們將這些數據轉換為有用的信息和知識。

本書前版曾被KDnuggets的讀者評選為最受歡迎的數據挖掘專著,是一本可讀性極佳的教材。它從資料庫角度全面系統地介紹數據挖掘的概念、方法和技術以及技術研究進展,並重點關注近年來該領域重要和最新的課題——數據倉庫和數據立方體技術,流數據挖掘,社會網路挖掘,空間、多媒體和其他復雜數據挖掘。每章都針對關鍵專題有單獨的指導,提供最佳演算法,並對怎樣將技術運用到實際工作中給出了經過實踐檢驗的實用型規則。如果你希望自己能熟練掌握和運用當今最有力的數據挖掘技術,那本書正是你需要閱讀和學習的寶貴資源。本書是數據挖掘和知識發現領域內的所有教師、研究人員、開發人員和用戶都必讀的一本書。

【本書特色】

引入了許多演算法和實現示例,全部以易於理解的偽代碼編寫,適用於實際的大規模數據挖掘項目。

討論了一些高級主題,例如挖掘面向對象的關系型資料庫、空間資料庫、多媒體資料庫、時間序列資料庫、文本資料庫、萬維網以及其他領域的應用等。

全面而實用地給出用於從海量數據中獲取盡可能多信息的概念和技術。

作者簡介:Jiawei Han(韓家煒)伊利諾伊大學厄巴納-尚佩恩分校計算機科學系Abel Bliss教授。由於在數據挖掘和資料庫系統領域卓有成效的研究工作,他曾多次獲得各種榮譽和獎勵,包括2004年ACM SIGKDD頒發的最佳創新獎,2005年IEEE Computer Society頒發的技術成就獎,2009年IEEE頒發的W. Wallace McDowell獎。他是ACM和IEEE Fellow。

Micheline Kamber 擁有加拿大康考迪亞大學計算機科學碩士學位,她是NSERC Scholar,先後在加拿大麥吉爾大學、西蒙-弗雷澤大學及瑞士從事研究工作。

Jian Pei(裴健)目前是加拿大西蒙-弗雷澤大學計算機科學學院教授。2002年,他在Jiawei Han教授的指導下獲得西蒙-弗雷澤大學博士學位。


Ⅱ 數據挖掘的方法及實施

數據挖掘的方法及實施
作為一門處理數據的新興技術,數據挖掘有許多的新特徵。首先,數據挖掘面對的是海量的數據,這也是數據挖掘產生的原因。其次,數據可能是不完全的、有雜訊的、隨機的,有復雜的數據結構,維數大。最後,數據挖掘是許多學科的交叉,運用了統計學,計算機,數學等學科的技術。以下是常見和應用最廣泛的演算法和模型:
傳統統計方法:①抽樣技術:我們面對的是大量的數據,對所有的數據進行分析是不可能的也是沒有必要的,就要在理論的指導下進行合理的抽樣。②多元統計分析:因子分析,聚類分析等。③統計預測方法,如回歸分析,時間序列分析等。
可視化技術:用圖表等方式把數據特徵用直觀地表述出來,如直方圖等,這其中運用的許多描述統計的方法。可視化技術面對的一個難題是高維數據的可視化。
決策樹:利用一系列規則劃分,建立樹狀圖,可用於分類和預測。常用的演算法有CART、CHAID、ID3、C4.5、C5.0等。
神經網路:模擬人的神經元功能,經過輸入層,隱藏層,輸出層等,對數據進行調整,計算,最後得到結果,用於分類和回歸。
遺傳演算法:基於自然進化理論,模擬基因聯合、突變、選擇等過程的一種優化技術。
關聯規則挖掘演算法:關聯規則是描述數據之間存在關系的規則,形式為「A1∧A2∧…An→B1∧B2∧…Bn」。一般分為兩個步驟:①求出大數據項集。②用大數據項集產生關聯規則。
除了上述的常用方法外,還有粗集方法,模糊集合方法,Bayesian Belief Netords,最鄰近演算法(k-nearest neighbors method(KNN))等。
數據挖掘的實施流程
前面我們討論了數據挖掘的定義,功能和方法,現在關鍵的問題是如何實施,其一般的數據挖掘流程如下:
問題理解和提出→數據准備→數據整理→建立模型→評價和解釋
問題理解和提出:在開始數據挖掘之前最基礎的就是理解數據和實際的業務問題,在這個基礎之上提出問題,對目標有明確的定義。
數據准備:獲取原始的數據,並從中抽取一定數量的子集,建立數據挖掘庫,其中一個問題是如果企業原來的數據倉庫滿足數據挖掘的要求,就可以將數據倉庫作為數據挖掘庫。
數據整理:由於數據可能是不完全的、有雜訊的、隨機的,有復雜的數掘結構,就要對數據進行初步的整理,清洗不完全的數據,做初步的描述分析,選擇與數據挖掘有關的變數,或者轉變變數。
建立模型:根據數據挖掘的目標和數據的特徵,選擇合適的模型。
評價和解釋:對數據挖掘的結果進行評價,選擇最優的模型,作出評價,運用於實際問題,並且要和專業知識結合對結果進行解釋。
以上的流程不是一次完成的,可能其中某些步驟或者全部要反復進行。

Ⅲ 常見的數據挖掘方法有哪些

數據挖掘的常用方法有:

  • 神經網路方法

  • 神經網路由於本身良好的魯棒性、自組織自適應性、並行處理、分布存儲和高度容錯等特性非常適合解決數據挖掘的問題,因此近年來越來越受到人們的關注。

  • 遺傳演算法

  • 遺傳演算法是一種基於生物自然選擇與遺傳機理的隨機搜索演算法,是一種仿生全局優化方法。遺傳演算法具有的隱含並行性、易於和其它模型結合等性質使得它在數據挖掘中被加以應用。

  • 決策樹方法

  • 決策樹是一種常用於預測模型的演算法,它通過將大量數據有目的分類,從中找到一些有價值的,潛在的信息。它的主要優點是描述簡單,分類速度快,特別適合大規模的數據處理。

  • 粗集方法

  • 粗集理論是一種研究不精確、不確定知識的數學工具。粗集方法有幾個優點:不需要給出額外信息;簡化輸入信息的表達空間;演算法簡單,易於操作。粗集處理的對象是類似二維關系表的信息表。

  • 覆蓋正例排斥反例方法

  • 它是利用覆蓋所有正例、排斥所有反例的思想來尋找規則。首先在正例集合中任選一個種子,到反例集合中逐個比較。與欄位取值構成的選擇子相容則捨去,相反則保留。按此思想循環所有正例種子,將得到正例的規則(選擇子的合取式)。

  • 統計分析方法

  • 在資料庫欄位項之間存在兩種關系:函數關系和相關關系,對它們的分析可採用統計學方法,即利用統計學原理對資料庫中的信息進行分析。可進行常用統計、回歸分析、相關分析、差異分析等。

  • 模糊集方法

  • 即利用模糊集合理論對實際問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。系統的復雜性越高,模糊性越強,一般模糊集合理論是用隸屬度來刻畫模糊事物的亦此亦彼性的。

Ⅳ 求spss modeler 數據挖掘方法及應用薛薇的PDF,書落在學校了,急用,謝謝

CLEMENTINE數據挖掘方法及應用(掃描本).pdf (選擇普通下載即可)

《Clementine數據挖掘方法及應用》這本書其實和《SPSS Modeler數據挖掘方法及應用》是一樣的,作者等都是同一個人,除了名字不一樣,絕大部分內容是一樣的兩本書。

1、PC電腦端或手機網頁端登陸,即可查看、下載;

2、文件有時效性,若失效或下載問題,請@私信;

3、資料收集於互聯網,僅供個人試讀,有能力多支持紙質書籍!

Ⅳ 三種經典的數據挖掘演算法

演算法,可以說是很多技術的核心,而數據挖掘也是這樣的。數據挖掘中有很多的演算法,正是這些演算法的存在,我們的數據挖掘才能夠解決更多的問題。如果我們掌握了這些演算法,我們就能夠順利地進行數據挖掘工作,在這篇文章我們就給大家簡單介紹一下數據挖掘的經典演算法,希望能夠給大家帶來幫助。
1.KNN演算法
KNN演算法的全名稱叫做k-nearest neighbor classification,也就是K最近鄰,簡稱為KNN演算法,這種分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似,即特徵空間中最鄰近的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。KNN演算法常用於數據挖掘中的分類,起到了至關重要的作用。
2.Naive Bayes演算法
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。這種演算法在數據挖掘工作使用率還是挺高的,一名優秀的數據挖掘師一定懂得使用這一種演算法。
3.CART演算法
CART, 也就是Classification and Regression Trees。就是我們常見的分類與回歸樹,在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。這兩個思想也就決定了這種演算法的地位。
在這篇文章中我們給大家介紹了關於KNN演算法、Naive Bayes演算法、CART演算法的相關知識,其實這三種演算法在數據挖掘中占據著很高的地位,所以說如果要從事數據挖掘行業一定不能忽略這些演算法的學習。

Ⅵ 數據挖掘演算法有哪些

以下主要是常見的10種數據挖掘的演算法,數據挖掘分為:分類(Logistic回歸模型、神經網路、支持向量機等)、關聯分析、聚類分析、孤立點分析。每一大類下都有好幾種演算法,這個具體可以參考數據挖掘概論這本書(英文最新版)

Ⅶ 什麼是數據挖掘,簡述其作用和應用。

數據挖掘是指從大量的數據中通過演算法搜索隱藏於其中信息的過程。

數據挖掘是指通過大量數據集進行分類的自動化過程,以通過數據分析來識別趨勢和模式,建立關系來解決業務問題。換句話說,數據挖掘是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的,但又是潛在有用的信息和知識的過程。

數據挖掘的作用體現在數據挖掘的定義上,作用就是從大量的數據中搜索出隱藏於其中有用的信息。

(7)數據挖掘演算法及應用pdf擴展閱讀:

數據挖掘分析方法:

數據挖掘分為有指導的數據挖掘和無指導的數據挖掘。有指導的數據挖掘是利用可用的數據建立一個模型,這個模型是對一個特定屬性的描述。無指導的數據挖掘是在所有的屬性中尋找某種關系。具體而言,分類、估值和預測屬於有指導的數據挖掘;關聯規則和聚類屬於無指導的數據挖掘。

1、分類,它首先從數據中選出已經分好類的訓練集,在該訓練集上運用數據挖掘技術,建立一個分類模型,再將該模型用於對沒有分類的數據進行分類。

2、估值,估值與分類類似,但估值最終的輸出結果是連續型的數值,估值的量並非預先確定。估值可以作為分類的准備工作。

3、預測,它是通過分類或估值來進行,通過分類或估值的訓練得出一個模型,如果對於檢驗樣本組而言該模型具有較高的准確率,可將該模型用於對新樣本的未知變數進行預測。

4、相關性分組或關聯規則。其目的是發現哪些事情總是一起發生。

5、聚類,它是自動尋找並建立分組規則的方法,它通過判斷樣本之間的相似性,把相似樣本劃分在一個簇中。

參考資料來源:網路-數據挖掘

Ⅷ 數據挖掘十大演算法 pdf

http://www.cs.uvm.e/~icdm/algorithms/10Algorithms-08.pdf
到這個網站下載就OK

Ⅸ 數據挖掘演算法與生活中的應用案例

數據挖掘演算法與生活中的應用案例

如何分辨出垃圾郵件」、「如何判斷一筆交易是否屬於欺詐」、「如何判斷紅酒的品質和檔次」、「掃描王是如何做到文字識別的」、「如何判斷佚名的著作是否出自某位名家之手」、「如何判斷一個細胞是否屬於腫瘤細胞」等等,這些問題似乎都很專業,都不太好回答。但是,如果了解一點點數據挖掘的知識,你,或許會有柳暗花明的感覺。
本文,主要想簡單介紹下數據挖掘中的演算法,以及它包含的類型。然後,通過現實中觸手可及的、活生生的案例,去詮釋它的真實存在。 一般來說,數據挖掘的演算法包含四種類型,即分類、預測、聚類、關聯。前兩種屬於有監督學習,後兩種屬於無監督學習,屬於描述性的模式識別和發現。
有監督學習有監督的學習,即存在目標變數,需要探索特徵變數和目標變數之間的關系,在目標變數的監督下學習和優化演算法。例如,信用評分模型就是典型的有監督學習,目標變數為「是否違約」。演算法的目的在於研究特徵變數(人口統計、資產屬性等)和目標變數之間的關系。
分類演算法分類演算法和預測演算法的最大區別在於,前者的目標變數是分類離散型(例如,是否逾期、是否腫瘤細胞、是否垃圾郵件等),後者的目標變數是連續型。一般而言,具體的分類演算法包括,邏輯回歸、決策樹、KNN、貝葉斯判別、SVM、隨機森林、神經網路等。
預測演算法預測類演算法,其目標變數一般是連續型變數。常見的演算法,包括線性回歸、回歸樹、神經網路、SVM等。
無監督學習無監督學習,即不存在目標變數,基於數據本身,去識別變數之間內在的模式和特徵。例如關聯分析,通過數據發現項目A和項目B之間的關聯性。例如聚類分析,通過距離,將所有樣本劃分為幾個穩定可區分的群體。這些都是在沒有目標變數監督下的模式識別和分析。
聚類分析聚類的目的就是實現對樣本的細分,使得同組內的樣本特徵較為相似,不同組的樣本特徵差異較大。常見的聚類演算法包括kmeans、系譜聚類、密度聚類等。
關聯分析關聯分析的目的在於,找出項目(item)之間內在的聯系。常常是指購物籃分析,即消費者常常會同時購買哪些產品(例如游泳褲、防曬霜),從而有助於商家的捆綁銷售。
基於數據挖掘的案例和應用上文所提到的四種演算法類型(分類、預測、聚類、關聯),是比較傳統和常見的。還有其他一些比較有趣的演算法分類和應用場景,例如協同過濾、異常值分析、社會網路、文本分析等。下面,想針對不同的演算法類型,具體的介紹下數據挖掘在日常生活中真實的存在。下面是能想到的、幾個比較有趣的、和生活緊密關聯的例子。
基於分類模型的案例這裡面主要想介紹兩個案例,一個是垃圾郵件的分類和判斷,另外一個是在生物醫葯領域的應用,即腫瘤細胞的判斷和分辨。
垃圾郵件的判別郵箱系統如何分辨一封Email是否屬於垃圾郵件?這應該屬於文本挖掘的范疇,通常會採用樸素貝葉斯的方法進行判別。它的主要原理是,根據郵件正文中的單詞,是否經常出現在垃圾郵件中,進行判斷。例如,如果一份郵件的正文中包含「報銷」、「發票」、「促銷」等詞彙時,該郵件被判定為垃圾郵件的概率將會比較大。
一般來說,判斷郵件是否屬於垃圾郵件,應該包含以下幾個步驟。
第一,把郵件正文拆解成單片語合,假設某篇郵件包含100個單詞。
第二,根據貝葉斯條件概率,計算一封已經出現了這100個單詞的郵件,屬於垃圾郵件的概率和正常郵件的概率。如果結果表明,屬於垃圾郵件的概率大於正常郵件的概率。那麼該郵件就會被劃為垃圾郵件。
醫學上的腫瘤判斷如何判斷細胞是否屬於腫瘤細胞呢?腫瘤細胞和普通細胞,有差別。但是,需要非常有經驗的醫生,通過病理切片才能判斷。如果通過機器學習的方式,使得系統自動識別出腫瘤細胞。此時的效率,將會得到飛速的提升。並且,通過主觀(醫生)+客觀(模型)的方式識別腫瘤細胞,結果交叉驗證,結論可能更加靠譜。
如何操作?通過分類模型識別。簡言之,包含兩個步驟。首先,通過一系列指標刻畫細胞特徵,例如細胞的半徑、質地、周長、面積、光滑度、對稱性、凹凸性等等,構成細胞特徵的數據。其次,在細胞特徵寬表的基礎上,通過搭建分類模型進行腫瘤細胞的判斷。
基於預測模型的案例這裡面主要想介紹兩個案例。即通過化學特性判斷和預測紅酒的品質。另外一個是,通過搜索引擎來預測和判斷股價的波動和趨勢。
紅酒品質的判斷如何評鑒紅酒?有經驗的人會說,紅酒最重要的是口感。而口感的好壞,受很多因素的影響,例如年份、產地、氣候、釀造的工藝等等。但是,統計學家並沒有時間去品嘗各種各樣的紅酒,他們覺得通過一些化學屬性特徵就能夠很好地判斷紅酒的品質了。並且,現在很多釀酒企業其實也都這么幹了,通過監測紅酒中化學成分的含量,從而控制紅酒的品質和口感。
那麼,如何判斷鑒紅酒的品質呢?
第一步,收集很多紅酒樣本,整理檢測他們的化學特性,例如酸性、含糖量、氯化物含量、硫含量、酒精度、PH值、密度等等。
第二步,通過分類回歸樹模型進行預測和判斷紅酒的品質和等級。
搜索引擎的搜索量和股價波動一隻南美洲熱帶雨林中的蝴蝶,偶爾扇動了幾下翅膀,可以在兩周以後,引起美國德克薩斯州的一場龍卷風。你在互聯網上的搜索是否會影響公司股價的波動?
很早之前,就已經有文獻證明,互聯網關鍵詞的搜索量(例如流感)會比疾控中心提前1到2周預測出某地區流感的爆發。
同樣,現在也有些學者發現了這樣一種現象,即公司在互聯網中搜索量的變化,會顯著影響公司股價的波動和趨勢,即所謂的投資者注意力理論。該理論認為,公司在搜索引擎中的搜索量,代表了該股票被投資者關注的程度。因此,當一隻股票的搜索頻數增加時,說明投資者對該股票的關注度提升,從而使得該股票更容易被個人投資者購買,進一步地導致股票價格上升,帶來正向的股票收益。這是已經得到無數論文驗證了的。
基於關聯分析的案例:沃爾瑪的啤酒尿布啤酒尿布是一個非常非常古老陳舊的故事。故事是這樣的,沃爾瑪發現一個非常有趣的現象,即把尿布與啤酒這兩種風馬牛不相及的商品擺在一起,能夠大幅增加兩者的銷量。原因在於,美國的婦女通常在家照顧孩子,所以,她們常常會囑咐丈夫在下班回家的路上為孩子買尿布,而丈夫在買尿布的同時又會順手購買自己愛喝的啤酒。沃爾瑪從數據中發現了這種關聯性,因此,將這兩種商品並置,從而大大提高了關聯銷售。
啤酒尿布主要講的是產品之間的關聯性,如果大量的數據表明,消費者購買A商品的同時,也會順帶著購買B產品。那麼A和B之間存在關聯性。在超市中,常常會看到兩個商品的捆綁銷售,很有可能就是關聯分析的結果。
基於聚類分析的案例:零售客戶細分對客戶的細分,還是比較常見的。細分的功能,在於能夠有效的劃分出客戶群體,使得群體內部成員具有相似性,但是群體之間存在差異性。其目的在於識別不同的客戶群體,然後針對不同的客戶群體,精準地進行產品設計和推送,從而節約營銷成本,提高營銷效率。
例如,針對商業銀行中的零售客戶進行細分,基於零售客戶的特徵變數(人口特徵、資產特徵、負債特徵、結算特徵),計算客戶之間的距離。然後,按照距離的遠近,把相似的客戶聚集為一類,從而有效的細分客戶。將全體客戶劃分為諸如,理財偏好者、基金偏好者、活期偏好者、國債偏好者、風險均衡者、渠道偏好者等。
基於異常值分析的案例:支付中的交易欺詐偵測採用支付寶支付時,或者刷信用卡支付時,系統會實時判斷這筆刷卡行為是否屬於盜刷。通過判斷刷卡的時間、地點、商戶名稱、金額、頻率等要素進行判斷。這裡面基本的原理就是尋找異常值。如果您的刷卡被判定為異常,這筆交易可能會被終止。
異常值的判斷,應該是基於一個欺詐規則庫的。可能包含兩類規則,即事件類規則和模型類規則。第一,事件類規則,例如刷卡的時間是否異常(凌晨刷卡)、刷卡的地點是否異常(非經常所在地刷卡)、刷卡的商戶是否異常(被列入黑名單的套現商戶)、刷卡金額是否異常(是否偏離正常均值的三倍標准差)、刷卡頻次是否異常(高頻密集刷卡)。第二,模型類規則,則是通過演算法判定交易是否屬於欺詐。一般通過支付數據、賣家數據、結算數據,構建模型進行分類問題的判斷。
基於協同過濾的案例:電商猜你喜歡和推薦引擎電商中的猜你喜歡,應該是大家最為熟悉的。在京東商城或者亞馬遜購物,總會有「猜你喜歡」、「根據您的瀏覽歷史記錄精心為您推薦」、「購買此商品的顧客同時也購買了商品」、「瀏覽了該商品的顧客最終購買了商品」,這些都是推薦引擎運算的結果。
這裡面,確實很喜歡亞馬遜的推薦,通過「購買該商品的人同時購買了**商品」,常常會發現一些質量比較高、較為受認可的書。一般來說,電商的「猜你喜歡」(即推薦引擎)都是在協同過濾演算法(Collaborative Filter)的基礎上,搭建一套符合自身特點的規則庫。即該演算法會同時考慮其他顧客的選擇和行為,在此基礎上搭建產品相似性矩陣和用戶相似性矩陣。基於此,找出最相似的顧客或最關聯的產品,從而完成產品的推薦。
基於社會網路分析的案例:電信中的種子客戶種子客戶和社會網路,最早出現在電信領域的研究。即,通過人們的通話記錄,就可以勾勒出人們的關系網路。電信領域的網路,一般會分析客戶的影響力和客戶流失、產品擴散的關系。
基於通話記錄,可以構建客戶影響力指標體系。採用的指標,大概包括如下,一度人脈、二度人脈、三度人脈、平均通話頻次、平均通話量等。基於社會影響力,分析的結果表明,高影響力客戶的流失會導致關聯客戶的流失。其次,在產品的擴散上,選擇高影響力客戶作為傳播的起點,很容易推動新套餐的擴散和滲透。
此外,社會網路在銀行(擔保網路)、保險(團伙欺詐)、互聯網(社交互動)中也都有很多的應用和案例。
基於文本分析的案例這裡面主要想介紹兩個案例。一個是類似「掃描王」的APP,直接把紙質文檔掃描成電子文檔。相信很多人都用過,這里准備簡單介紹下原理。另外一個是,江湖上總是傳言紅樓夢的前八十回和後四十回,好像並非都是出自曹雪芹之手,這裡面准備從統計的角度聊聊。
字元識別:掃描王APP手機拍照時會自動識別人臉,還有一些APP,例如掃描王,可以掃描書本,然後把掃描的內容自動轉化為word。這些屬於圖像識別和字元識別(Optical Character Recognition)。圖像識別比較復雜,字元識別理解起來比較容易些。
查找了一些資料,字元識別的大概原理如下,以字元S為例。
第一,把字元圖像縮小到標准像素尺寸,例如12*16。注意,圖像是由像素構成,字元圖像主要包括黑、白兩種像素。
第二,提取字元的特徵向量。如何提取字元的特徵,採用二維直方圖投影。就是把字元(12*16的像素圖)往水平方向和垂直方向上投影。水平方向有12個維度,垂直方向有16個維度。這樣分別計算水平方向上各個像素行中黑色像素的累計數量、垂直方向各個像素列上的黑色像素的累計數量。從而得到水平方向12個維度的特徵向量取值,垂直方向上16個維度的特徵向量取值。這樣就構成了包含28個維度的字元特徵向量。
第三,基於前面的字元特徵向量,通過神經網路學習,從而識別字元和有效分類。
文學著作與統計:紅樓夢歸屬這是非常著名的一個爭論,懸而未決。對於紅樓夢的作者,通常認為前80回合是曹雪芹所著,後四十回合為高鶚所寫。其實主要問題,就是想確定,前80回合和後40回合是否在遣詞造句方面存在顯著差異。
這事讓一群統計學家比較興奮了。有些學者通過統計名詞、動詞、形容詞、副詞、虛詞出現的頻次,以及不同詞性之間的相關系做判斷。有些學者通過虛詞(例如之、其、或、亦、了、的、不、把、別、好),判斷前後文風的差異。有些學者通過場景(花卉、樹木、飲食、醫葯與詩詞)頻次的差異,來做統計判斷。總而言之,主要通過一些指標量化,然後比較指標之間是否存在顯著差異,藉此進行寫作風格的判斷。

以上是小編為大家分享的關於數據挖掘演算法與生活中的應用案例的相關內容,更多信息可以關注環球青藤分享更多干貨

Ⅹ 《數據挖掘概念與技術(原書第3版)》pdf下載在線閱讀全文,求百度網盤雲資源

《數據挖掘》((美)Jiawei Han)電子書網盤下載免費在線閱讀

鏈接: https://pan..com/s/1A_aVpCLktPsdS7HCMlsiZQ

提取碼: g92q

書名:數據挖掘

作者:(美)Jiawei Han

譯者:范明

豆瓣評分:7.9

出版社:機械工業出版社

出版年份:2012-8

頁數:468

內容簡介:

數據挖掘領域最具里程碑意義的經典著作

完整全面闡述該領域的重要知識和技術創新

引入了許多演算法和實現示例,全部以易於理解的偽代碼編寫,適用於實際的大規模數據挖掘項目。

討論了一些高級主題,例如挖掘面向對象的關系型資料庫、空間資料庫、多媒體資料庫、時間序列資料庫、文本資料庫、萬維網以及其他領域的應用等。

全面而實用地給出用於從海量數據中獲取盡可能多信息的概念和技術。

作者簡介:

Jiawei Han(韓家煒)伊利諾伊大學厄巴納-尚佩恩分校計算機科學系Abel Bliss教授。由於在數據挖掘和資料庫系統領域卓有成效的研究工作,他曾多次獲得各種榮譽和獎勵,包括2004年ACM SIGKDD頒發的最佳創新獎,2005年IEEE Computer Society頒發的技術成就獎,2009年IEEE頒發的W. Wallace McDowell獎。他是ACM和IEEE Fellow。

Micheline Kamber 擁有加拿大康考迪亞大學計算機科學碩士學位,她是NSERC Scholar,先後在加拿大麥吉爾大學、西蒙-弗雷澤大學及瑞士從事研究工作。

Jian Pei(裴健)目前是加拿大西蒙-弗雷澤大學計算機科學學院教授。2002年,他在Jiawei Han教授的指導下獲得西蒙-弗雷澤大學博士學位。

熱點內容
oracle存儲過程集合 發布:2025-01-18 08:42:39 瀏覽:884
洋蔥數學緩存 發布:2025-01-18 08:38:36 瀏覽:918
電影的文件夾都是 發布:2025-01-18 08:21:49 瀏覽:835
post提交php 發布:2025-01-18 08:21:42 瀏覽:460
如何禁止寫入文件夾 發布:2025-01-18 08:21:04 瀏覽:363
360雲盤等待上傳 發布:2025-01-18 08:21:03 瀏覽:796
安卓手機怎麼設置壁紙 發布:2025-01-18 08:20:23 瀏覽:319
如何關閉密碼鎖 發布:2025-01-18 08:18:51 瀏覽:859
我的電腦ftp打不開 發布:2025-01-18 08:18:05 瀏覽:513
手機如何與伺服器端連接的 發布:2025-01-18 08:16:49 瀏覽:46