當前位置:首頁 » 操作系統 » 去噪分治演算法

去噪分治演算法

發布時間: 2022-04-18 22:45:44

⑴ 什麼是分治演算法貪婪演算法

貪婪演算法

雖然設計一個好的求解演算法更像是一門藝術,而不像是技術,但仍然存在一些行之有效的能夠用於解決許多問題的演算法設計方法,你可以使用這些方法來設計演算法,並觀察這些演算法是如何工作的。一般情況下,為了獲得較好的性能,必須對演算法進行細致的調整。但是在某些情況下,演算法經過調整之後性能仍無法達到要求,這時就必須尋求另外的方法來求解該問題。

分治演算法

就是把大問題分解成一些小問題,然後重小問題構造出大問題的解。

⑵ 如何理解分治演算法及相關例題

演算法步驟:
1 :從左上角起,給棋盤編號(1,1),(1,2)(8,8),計為集合qp。tracks記錄走過的每個點. (可以想像為坐標(x,y))

2:設起點為(1,1),記為 當前位置 cp,

3:搜索所有可走的下一步,根據「馬行日」的走步規則,可行的點的坐標是x坐標加減1,y坐標加減2,

或是x加減2,y加減1; (例如起點(1,1),可計算出(1+1,1+2),(1+1,1-2),(1-1,1+2),(1-1,1-2),(1+2,1+1),(1+2,1-1),(1-2,1+1),(1-2,1-1) 共8個點), 如果沒有搜到可行點,程序結束。

4:判斷計算出的點是否在棋盤內,即是否在集合qp中;判斷點是否已經走過,即是否在集合tracts中,不在才是合法的點。(在上面的舉例起點(1,1),則合法的下一步是(2,3)和 (3,2))

5:將前一步的位置記錄到集合tracts中,即tracts.add(cp);選擇一個可行點,cp=所選擇點的坐標。

6:如果tracts里的點個數等於63,退出程序,否則回到步驟3繼續執行。

⑶ 什麼是分治演算法

分治法就是將一個復雜的問題分成多個相對簡單的獨立問題進行求解,並且綜合所有簡單問題的解可以組成這個復雜問題的解。
例如快速排序演算法就是一個分治法的例子。即將一個大的無序序列排序成有序序列,等於將兩個無序的子序列排序成有序,且兩個子序列之間滿足一個序列的元素普遍大於另一個序列中的元素。

⑷ 使用分治演算法解決的問題具備什麼特徵

分治法能解決的問題一般具有以下幾個特徵:

1、該問題的規模縮小到一定的程度就可以容易的解決。

2、該問題可以分解為若干個規模較小的相同問題,即該問題具有最優子結構性質。

3、利用該問題分解出的子問題的解可以合並為該問題的解。

4、該問題所分解出的自問題是相互獨立的,即子問題之間不包含子子問題。

(4)去噪分治演算法擴展閱讀

思想及策略

分治演算法的設計思想是:將一個難以直接解決的大問題,分割成一些規模小的相同的問題,一邊各個擊破,分而治之。

分治演算法的策略是:對於一個規模為n的問題,若該問題可以容易地解決(比如規模n比較小)則直接解決,否則將其分解成k個規模較小的自問題,這些子問題相互獨立且與元問題形式相同,遞歸地解這些子問題,然後將各子問題的解合並得到原問題的解。

⑸ 分治演算法的應用實例

下面通過實例加以說明: 給你一個裝有1 6個硬幣的袋子。1 6個硬幣中有一個是偽造的,並且那個偽造的硬幣比真的硬幣要輕一些。你的任務是找出這個偽造的硬幣。為了幫助你完成這一任務,將提供一台可用來比較兩組硬幣重量的儀器,利用這台儀器,可以知道兩組硬幣的重量是否相同。比較硬幣1與硬幣2的重量。假如硬幣1比硬幣2輕,則硬幣1是偽造的;假如硬幣2比硬幣1輕,則硬幣2是偽造的。這樣就完成了任務。假如兩硬幣重量相等,則比較硬幣3和硬幣4。同樣,假如有一個硬幣輕一些,則尋找偽幣的任務完成。假如兩硬幣重量相等,則繼續比較硬幣5和硬幣6。按照這種方式,可以最多通過8次比較來判斷偽幣的存在並找出這一偽幣。
另外一種方法就是利用分而治之方法。假如把1 6硬幣的例子看成一個大的問題。第一步,把這一問題分成兩個小問題。隨機選擇8個硬幣作為第一組稱為A組,剩下的8個硬幣作為第二組稱為B組。這樣,就把1 6個硬幣的問題分成兩個8硬幣的問題來解決。第二步,判斷A和B組中是否有偽幣。可以利用儀器來比較A組硬幣和B組硬幣的重量。假如兩組硬幣重量相等,則可以判斷偽幣不存在。假如兩組硬幣重量不相等,則存在偽幣,並且可以判斷它位於較輕的那一組硬幣中。最後,在第三步中,用第二步的結果得出原先1 6個硬幣問題的答案。若僅僅判斷硬幣是否存在,則第三步非常簡單。無論A組還是B組中有偽幣,都可以推斷這1 6個硬幣中存在偽幣。因此,僅僅通過一次重量的比較,就可以判斷偽幣是否存在。
假設需要識別出這一偽幣。把兩個或三個硬幣的情況作為不可再分的小問題。注意如果只有一個硬幣,那麼不能判斷出它是否就是偽幣。在一個小問題中,通過將一個硬幣分別與其他兩個硬幣比較,最多比較兩次就可以找到偽幣。這樣,1 6硬幣的問題就被分為兩個8硬幣(A組和B組)的問題。通過比較這兩組硬幣的重量,可以判斷偽幣是否存在。如果沒有偽幣,則演算法終止。否則,繼續劃分這兩組硬幣來尋找偽幣。假設B是輕的那一組,因此再把它分成兩組,每組有4個硬幣。稱其中一組為B1,另一組為B2。比較這兩組,肯定有一組輕一些。如果B1輕,則偽幣在B1中,再將B1又分成兩組,每組有兩個硬幣,稱其中一組為B1a,另一組為B1b。比較這兩組,可以得到一個較輕的組。由於這個組只有兩個硬幣,因此不必再細分。比較組中兩個硬幣的重量,可以立即知道哪一個硬幣輕一些。較輕的硬幣就是所要找的偽幣。 在n個元素中找出最大元素和最小元素。我們可以把這n個元素放在一個數組中,用直接比較法求出。演算法如下:
void maxmin1(int A[],int n,int *max,int *min)
{ int i;
*min=*max=A[0];
for(i=0;i <= n;i++)
{ if(A[i]> *max) *max= A[i];
if(A[i] < *min) *min= A[i];
}
}
上面這個演算法需比較2(n-1)次。能否找到更好的演算法呢?我們用分治策略來討論。
把n個元素分成兩組:
A1={A[1],...,A[int(n/2)]}和A2={A[INT(N/2)+1],...,A[N]}
分別求這兩組的最大值和最小值,然後分別將這兩組的最大值和最小值相比較,求出全部元素的最大值和最小值。如果A1和A2中的元素多於兩個,則再用上述方法各分為兩個子集。直至子集中元素至多兩個元素為止。
例如有下面一組元素:-13,13,9,-5,7,23,0,15。用分治策略比較的演算法如下:
void maxmin2(int A[],int i,int j,int *max,int *min)
/*A存放輸入的數據,i,j存放數據的范圍,初值為0,n-1,*max,*min 存放最大和最小值*/
{ int mid,max1,max2,min1,min2;
if (j==i) {最大和最小值為同一個數;return;}
if (j-1==i) {將兩個數直接比較,求得最大會最小值;return;}
mid=(i+j)/2;
求i~mid之間的最大最小值分別為max1,min1;
求mid+1~j之間的最大最小值分別為max2,min2;
比較max1和max2,大的就是最大值;
比較min1和min2,小的就是最小值;
} 題目:在一個(2^k)*(2^k)個方格組成的棋盤上,有一個特殊方格與其他方格不同,稱為特殊方格,稱這樣的棋盤為一個特殊棋盤。我們要求對棋盤的其餘部分用L型方塊填滿(註:L型方塊由3個單元格組成。即圍棋中比較忌諱的愚形三角,方向隨意),且任何兩個L型方塊不能重疊覆蓋。L型方塊的形態如下:
題目的解法使用分治法,即子問題和整體問題具有相同的形式。我們對棋盤做一個分割,切割一次後的棋盤如圖1所示,我們可以看到棋盤被切成4個一樣大小的子棋盤,特殊方塊必定位於四個子棋盤中的一個。假設如圖1所示,特殊方格位於右上角,我們把一個L型方塊(灰色填充)放到圖中位置。這樣對於每個子棋盤又各有一個「特殊方塊」,我們對每個子棋盤繼續這樣分割,直到子棋盤的大小為1為止。
用到的L型方塊需要(4^k-1)/3 個,演算法的時間是O(4^k),是漸進最優解法。
本題目的C語言的完整代碼如下(TC2.0下調試),運行時,先輸入k的大小,(1<=k<=6),然後分別輸入特殊方格所在的位置(x,y), 0<=x,y<=(2^k-1)。 #include<stdio.h>//#include<conio.h>//#include<math.h>inttitle=1;intboard[64][64];voidchessBoard(inttr,inttc,intdr,intdc,intsize){ints,t;if(size==1)return;t=title++;s=size/2;if(dr<tr+s&&dc<tc+s)chessBoard(tr,tc,dr,dc,s);else{board[tr+s-1][tc+s-1]=t;chessBoard(tr,tc,tr+s-1,tc+s-1,s);}if(dr<tr+s&&dc>=tc+s)chessBoard(tr,tc+s,dr,dc,s);else{board[tr+s-1][tc+s]=t;chessBoard(tr,tc+s,tr+s-1,tc+s,s);}if(dr>=tr+s&&dc<tc+s)chessBoard(tr+s,tc,dr,dc,s);else{board[tr+s][tc+s-1]=t;chessBoard(tr+s,tc,tr+s,tc+s-1,s);}if(dr>=tr+s&&dc>=tc+s)chessBoard(tr+s,tc+s,dr,dc,s);else{board[tr+s][tc+s]=t;chessBoard(tr+s,tc+s,tr+s,tc+s,s);}}voidmain(){intdr=0,dc=0,s=1,i=0,j=0;printf(printinthesizeofchess: );scanf(%d,&s);printf(printinspecalpointx,y: );scanf(%d%d,&dr,&dc);if(dr<s&&dc<s){chessBoard(0,0,dr,dc,s);for(i=0;i<s;i++){for(j=0;j<s;j++){printf(%4d,board[i][j]);}printf( );}}elseprintf(thewrongspecalpoint!! );getch();}

⑹ 分治演算法的基本思想

當我們求解某些問題時,由於這些問題要處理的數據相當多,或求解過程相當復雜,使得直接求解法在時間上相當長,或者根本無法直接求出。對於這類問題,我們往往先把它分解成幾個子問題,找到求出這幾個子問題的解法後,再找到合適的方法,把它們組合成求整個問題的解法。如果這些子問題還較大,難以解決,可以再把它們分成幾個更小的子問題,以此類推,直至可以直接求出解為止。這就是分治策略的基本思想。

⑺ 分治演算法

演算法步驟:
1 :從左上角起,給棋盤編號(1,1),(1,2),。。。。。。(8,8),計為集合qp。tracks記錄走過的每個點. (可以想像為坐標(x,y))

2:設起點為(1,1),記為 當前位置 cp,

3:搜索所有可走的下一步,根據「馬行日」的走步規則,可行的點的坐標是x坐標加減1,y坐標加減2,

或是x加減2,y加減1; (例如起點(1,1),可計算出(1+1,1+2),(1+1,1-2),(1-1,1+2),(1-1,1-2),(1+2,1+1),(1+2,1-1),(1-2,1+1),(1-2,1-1) 共8個點), 如果沒有搜到可行點,程序結束。

4:判斷計算出的點是否在棋盤內,即是否在集合qp中;判斷點是否已經走過,即是否在集合tracts中,不在才是合法的點。(在上面的舉例起點(1,1),則合法的下一步是(2,3)和 (3,2))

5:將前一步的位置記錄到集合tracts中,即tracts.add(cp);選擇一個可行點,cp=所選擇點的坐標。

6:如果tracts里的點個數等於63,退出程序,否則回到步驟3繼續執行。

⑻ 是的 計算機演算法

計算機演算法是以一步接一步的方式來詳細描述計算機如何將輸入轉化為所要求的輸出的過程,或者說,演算法是對計算機上執行的計算過程的具體描述。
編輯本段演算法性質一個演算法必須具備以下性質: (1)演算法首先必須是正確的,即對於任意的一組輸入,包括合理的輸入與不合理的輸入,總能得到預期的輸出。如果一個演算法只是對合理的輸入才能得到預期的輸出,而在異常情況下卻無法預料輸出的結果,那麼它就不是正確的。 (2)演算法必須是由一系列具體步驟組成的,並且每一步都能夠被計算機所理解和執行,而不是抽象和模糊的概念。 (3)每個步驟都有確定的執行順序,即上一步在哪裡,下一步是什麼,都必須明確,無二義性。 (4)無論演算法有多麼復雜,都必須在有限步之後結束並終止運行,即演算法的步驟必須是有限的。在任何情況下,演算法都不能陷入無限循環中。 一個問題的解決方案可以有多種表達方式,但只有滿足以上4個條件的解才能稱之為演算法。編輯本段重要演算法A*搜尋演算法
俗稱A星演算法。這是一種在圖形平面上,有多個節點的路徑,求出最低通過成本的演算法。常用於游戲中的NPC的移動計算,或線上游戲的BOT的移動計算上。該演算法像Dijkstra演算法一樣,可以找到一條最短路徑;也像BFS一樣,進行啟發式的搜索。
Beam Search
束搜索(beam search)方法是解決優化問題的一種啟發式方法,它是在分枝定界方法基礎上發展起來的,它使用啟發式方法估計k個最好的路徑,僅從這k個路徑出發向下搜索,即每一層只有滿意的結點會被保留,其它的結點則被永久拋棄,從而比分枝定界法能大大節省運行時間。束搜索於20 世紀70年代中期首先被應用於人工智慧領域,1976 年Lowerre在其稱為HARPY的語音識別系統中第一次使用了束搜索方法,他的目標是並行地搜索幾個潛在的最優決策路徑以減少回溯,並快速地獲得一個解。
二分取中查找演算法
一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。這種搜索演算法每一次比較都使搜索范圍縮小一半。
Branch and bound
分支定界(branch and bound)演算法是一種在問題的解空間樹上搜索問題的解的方法。但與回溯演算法不同,分支定界演算法採用廣度優先或最小耗費優先的方法搜索解空間樹,並且,在分支定界演算法中,每一個活結點只有一次機會成為擴展結點。
數據壓縮
數據壓縮是通過減少計算機中所存儲數據或者通信傳播中數據的冗餘度,達到增大數據密度,最終使數據的存儲空間減少的技術。數據壓縮在文件存儲和分布式系統領域有著十分廣泛的應用。數據壓縮也代表著尺寸媒介容量的增大和網路帶寬的擴展。
Diffie–Hellman密鑰協商
Diffie–Hellman key exchange,簡稱「D–H」,是一種安全協議。它可以讓雙方在完全沒有對方任何預先信息的條件下通過不安全信道建立起一個密鑰。這個密鑰可以在後續的通訊中作為對稱密鑰來加密通訊內容。
Dijkstra』s 演算法
迪科斯徹演算法(Dijkstra)是由荷蘭計算機科學家艾茲格·迪科斯徹(Edsger Wybe Dijkstra)發明的。演算法解決的是有向圖中單個源點到其他頂點的最短路徑問題。舉例來說,如果圖中的頂點表示城市,而邊上的權重表示著城市間開車行經的距離,迪科斯徹演算法可以用來找到兩個城市之間的最短路徑。
動態規劃
動態規劃是一種在數學和計算機科學中使用的,用於求解包含重疊子問題的最優化問題的方法。其基本思想是,將原問題分解為相似的子問題,在求解的過程中通過子問題的解求出原問題的解。動態規劃的思想是多種演算法的基礎,被廣泛應用於計算機科學和工程領域。比較著名的應用實例有:求解最短路徑問題,背包問題,項目管理,網路流優化等。這里也有一篇文章說得比較詳細。
歐幾里得演算法
在數學中,輾轉相除法,又稱歐幾里得演算法,是求最大公約數的演算法。輾轉相除法首次出現於歐幾里得的《幾何原本》(第VII卷,命題i和ii)中,而在中國則可以追溯至東漢出現的《九章算術》。
最大期望(EM)演算法
在統計計算中,最大期望(EM)演算法是在概率(probabilistic)模型中尋找參數最大似然估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variable)。最大期望經常用在機器學習和計算機視覺的數據聚類(Data Clustering)領域。最大期望演算法經過兩個步驟交替進行計算,第一步是計算期望(E),利用對隱藏變數的現有估計值,計算其最大似然估計值;第二步是最大化(M),最大化在 E 步上求得的最大似然值來計算參數的值。M 步上找到的參數估計值被用於下一個 E 步計算中,這個過程不斷交替進行。
快速傅里葉變換(FFT)
快速傅里葉變換(Fast Fourier Transform,FFT),是離散傅里葉變換的快速演算法,也可用於計算離散傅里葉變換的逆變換。快速傅里葉變換有廣泛的應用,如數字信號處理、計算大整數乘法、求解偏微分方程等等。
哈希函數
HashFunction是一種從任何一種數據中創建小的數字「指紋」的方法。該函數將數據打亂混合,重新創建一個叫做散列值的指紋。散列值通常用來代表一個短的隨機字母和數字組成的字元串。好的散列函數在輸入域中很少出現散列沖突。在散列表和數據處理中,不抑制沖突來區別數據,會使得資料庫記錄更難找到。
堆排序
Heapsort是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法。堆積樹是一個近似完全二叉樹的結構,並同時滿足堆積屬性:即子結點的鍵值或索引總是小於(或者大於)它的父結點。
歸並排序
Merge sort是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
RANSAC 演算法
RANSAC 是」RANdom SAmpleConsensus」的縮寫。該演算法是用於從一組觀測數據中估計數學模型參數的迭代方法,由Fischler and Bolles在1981提出,它是一種非確定性演算法,因為它只能以一定的概率得到合理的結果,隨著迭代次數的增加,這種概率是增加的。該演算法的基本假設是觀測數據集中存在」inliers」(那些對模型參數估計起到支持作用的點)和」outliers」(不符合模型的點),並且這組觀測數據受到雜訊影響。RANSAC 假設給定一組」inliers」數據就能夠得到最優的符合這組點的模型。
RSA加密演演算法
這是一個公鑰加密演算法,也是世界上第一個適合用來做簽名的演算法。今天的RSA已經專利失效,其被廣泛地用於電子商務加密,大家都相信,只要密鑰足夠長,這個演算法就會是安全的。
並查集Union-find
並查集是一種樹型的數據結構,用於處理一些不相交集合(Disjoint Sets)的合並及查詢問題。常常在使用中以森林來表示。
Viterbi algorithm
尋找最可能的隱藏狀態序列(Finding most probable sequence of hidden states)。編輯本段演算法特點1.有窮性。一個演算法應包含有限的操作步驟,而不能是無限的。事實上「有窮性」往往指「在合理的范圍之內」。如果讓計算機執行一個歷時1000年才結束的演算法,這雖然是有窮的,但超過了合理的限度,人們不把他是為有效演算法。 2. 確定性。演算法中的每一個步驟都應當是確定的,而不應當是含糊的、模稜兩可的。演算法中的每一個步驟應當不致被解釋成不同的含義,而應是十分明確的。也就是說,演算法的含義應當是唯一的,而不應當產生「歧義性」。 3. 有零個或多個輸入、所謂輸入是指在執行演算法是需要從外界取得必要的信息。 4. 有一個或多個輸出。演算法的目的是為了求解,沒有輸出的演算法是沒有意義的。 5.有效性。 演算法中的每一個 步驟都應當能有效的執行。並得到確定的結果。編輯本段演算法與程序雖然演算法與計算機程序密切相關,但二者也存在區別:計算機程序是演算法的一個實例,是將演算法通過某種計算機語言表達出來的具體形式;同一個演算法可以用任何一種計算機語言來表達。 演算法列表 圖論 路徑問題 0/1邊權最短路徑 BFS 非負邊權最短路徑(Dijkstra) 可以用Dijkstra解決問題的特徵 負邊權最短路徑 Bellman-Ford Bellman-Ford的Yen-氏優化 差分約束系統 Floyd 廣義路徑問題 傳遞閉包 極小極大距離 / 極大極小距離 Euler Path / Tour 圈套圈演算法 混合圖的 Euler Path / Tour Hamilton Path / Tour 特殊圖的Hamilton Path / Tour 構造 生成樹問題 最小生成樹 第k小生成樹 最優比率生成樹 0/1分數規劃 度限制生成樹 連通性問題 強大的DFS演算法 無向圖連通性 割點 割邊 二連通分支 有向圖連通性 強連通分支 2-SAT 最小點基 有向無環圖 拓撲排序 有向無環圖與動態規劃的關系 二分圖匹配問題 一般圖問題與二分圖問題的轉換思路 最大匹配 有向圖的最小路徑覆蓋 0 / 1矩陣的最小覆蓋 完備匹配 最優匹配 穩定婚姻 網路流問題 網路流模型的簡單特徵和與線性規劃的關系 最大流最小割定理 最大流問題 有上下界的最大流問題 循環流 最小費用最大流 / 最大費用最大流 弦圖的性質和判定 組合數學 解決組合數學問題時常用的思想 逼近 遞推 / 動態規劃 概率問題 Polya定理 計算幾何 / 解析幾何 計算幾何的核心:叉積 / 面積 解析幾何的主力:復數 基本形 點 直線,線段 多邊形 凸多邊形 / 凸包 凸包演算法的引進,卷包裹法 Graham掃描法 水平序的引進,共線凸包的補丁 完美凸包演算法 相關判定 兩直線相交 兩線段相交 點在任意多邊形內的判定 點在凸多邊形內的判定 經典問題 最小外接圓 近似O(n)的最小外接圓演算法 點集直徑 旋轉卡殼,對踵點 多邊形的三角剖分 數學 / 數論 最大公約數 Euclid演算法 擴展的Euclid演算法 同餘方程 / 二元一次不定方程 同餘方程組 線性方程組 高斯消元法 解mod 2域上的線性方程組 整系數方程組的精確解法 矩陣 行列式的計算 利用矩陣乘法快速計算遞推關系 分數 分數樹 連分數逼近 數論計算 求N的約數個數 求phi(N) 求約數和 快速數論變換 …… 素數問題 概率判素演算法 概率因子分解 數據結構 組織結構 二叉堆 左偏樹 二項樹 勝者樹 跳躍表 樣式圖標 斜堆 reap 統計結構 樹狀數組 虛二叉樹 線段樹 矩形面積並 圓形面積並 關系結構 Hash表 並查集 路徑壓縮思想的應用 STL中的數據結構 vector deque set / map 動態規劃 / 記憶化搜索 動態規劃和記憶化搜索在思考方式上的區別 最長子序列系列問題 最長不下降子序列 最長公共子序列 一類NP問題的動態規劃解法 樹型動態規劃 背包問題 動態規劃的優化 四邊形不等式 函數的凸凹性 狀態設計 規劃方向 線性規劃 常用思想 二分 最小表示法 串 KMP Trie結構 後綴樹/後綴數組 LCA/RMQ 有限狀態自動機理論 排序 選擇/冒泡 快速排序 堆排序 歸並排序 基數排序 拓撲排序 排序網路
擴展閱讀:
1
《計算機演算法設計與分析導論》朱清新等編著人民郵電出版社
開放分類:
計算機,演算法

⑼ 分治演算法的解題步驟

分治法解題的一般步驟:
(1)分解,將要解決的問題劃分成若干規模較小的同類問題;
(2)求解,當子問題劃分得足夠小時,用較簡單的方法解決;
(3)合並,按原問題的要求,將子問題的解逐層合並構成原問題的解。

熱點內容
python獲取當前路徑下的文件夾 發布:2024-09-30 15:07:24 瀏覽:141
java解析xml數據 發布:2024-09-30 15:06:39 瀏覽:625
微信傳輸助手的文件夾 發布:2024-09-30 15:03:05 瀏覽:937
老電腦音樂伺服器 發布:2024-09-30 15:02:20 瀏覽:317
連接linux下的資料庫 發布:2024-09-30 14:58:29 瀏覽:609
語言翻譯方法主要是編譯型的解釋 發布:2024-09-30 14:47:17 瀏覽:846
幫助跨站腳本 發布:2024-09-30 14:39:08 瀏覽:209
怎麼對wps表格加密 發布:2024-09-30 14:20:39 瀏覽:158
amd編譯代碼 發布:2024-09-30 14:10:46 瀏覽:521
映射網路驅動器拒絕訪問 發布:2024-09-30 13:55:46 瀏覽:446