當前位置:首頁 » 操作系統 » md4演算法

md4演算法

發布時間: 2022-04-16 11:36:21

1. md4值轉換為md5值

不能,因為MD4/MD5/SHA1等這類Hash演算法是不可逆的

2. 什麼是MD4

MD4是麻省理工學院教授Ronald Rivest於1990年設計的一中信息摘要演算法。它是一種用來測試信息完整性的密碼散列函數的實行。其摘要長度為128位。這個演算法影響了後來的演算法如MD5、SHA 家族和RIPEMD等。

1991年Den Boer和Bosselaers發表了一篇文章指出MD4的短處,至今未能找到基於MD4以上改進的演算法有任何可以用來進攻的弱點。

2004年8月有人報告在計算MD4時可能發生雜湊沖撞。

3. MD5,sha1,sha256分別輸出多少位啊

MD5輸出128位、SHA1輸出160位、SHA256輸出256位。

1、MD5消息摘要演算法(英語:MD5 Message-Digest Algorithm),一種被廣泛使用的密碼散列函數,可以產生出一個128位(16位元組)的散列值(hash value),用於確保信息傳輸完整一致。

2、SHA1安全哈希演算法(Secure Hash Algorithm)主要適用於數字簽名標准 裡面定義的數字簽名演算法。對於長度小於2^64位的消息,SHA1會產生一個160位的消息摘要。

3、sha256哈希值用作表示大量數據的固定大小的唯一值。數據的少量更改會在哈希值中產生不可預知的大量更改。SHA256 演算法的哈希值大小為 256 位。

(3)md4演算法擴展閱讀:

MD5應用:

1、一致性驗證

MD5的典型應用是對一段信息產生信息摘要,以防止被篡改。具體來說文件的MD5值就像是這個文件的「數字指紋」。每個文件的MD5值是不同的,如果任何人對文件做了任何改動,其MD5值也就是對應的「數字指紋」就會發生變化。

比如下載伺服器針對一個文件預先提供一個MD5值,用戶下載完該文件後,用我這個演算法重新計算下載文件的MD5值,通過比較這兩個值是否相同,就能判斷下載的文件是否出錯,或者說下載的文件是否被篡改了。

2、數字簽名

MD5的典型應用是對一段Message(位元組串)產生fingerprint(指紋),以防止被「篡改」。

例子:將一段話寫在一個叫 readme.txt文件中,並對這個readme.txt產生一個MD5的值並記錄在案,然後可以傳播這個文件給,如果修改了文件中的任何內容,你對這個文件重新計算MD5時就會發現(兩個MD5值不相同)。

如果再有一個第三方的認證機構,用MD5還可以防止文件作者的「抵賴」,這就是所謂的數字簽名應用。

3、安全訪問認證

MD5還廣泛用於操作系統的登陸認證上,如Unix、各類BSD系統登錄密碼、數字簽名等諸多方面。如在Unix系統中用戶的密碼是以MD5(或其它類似的演算法)經Hash運算後存儲在文件系統中。

當用戶登錄的時候,系統把用戶輸入的密碼進行MD5 Hash運算,然後再去和保存在文件系統中的MD5值進行比較,進而確定輸入的密碼是否正確。

即使暴露源程序和演算法描述,也無法將一個MD5的值變換回原始的字元串,從數學原理上說,是因為原始的字元串有無窮多個,這有點象不存在反函數的數學函數。

4. 請教「MD5、MD4演算法面向32位電腦」

計算機中的位數指的是CPU一次能處理的最大位數。32位計算機的CPU一次最多能處理32位數據,例如它的EAX寄存器就是32位的,當然32位計算機通常也可以處理16位和8位數據。在Intel由16位的286升級到386的時候,為了和16位系統兼容,它先推出的是386SX,這種CPU內部預算為32位,外部數據傳輸為16位。直到386DX以後,所有的CPU在內部和外部都是32位的了。

32位電腦與64位電腦有什麼不同?

我們通常說的64位技術是相對於32位而言的,這個位數指的是CPU GPRs(General-Purpose Registers,通用寄存器)的數據寬度為64位,64位指令集就是運行64位數據的指令,也就是說處理器一次可以運行64bit數據。

64位平台不管是在性能上,還是在功能上,都要領先於目前的32位平台,目前主流的32位處理器在性能執行模式方面存在一個嚴重的缺陷:當面臨大量的數據流時,32位的寄存器和指令集不能及時進行相應的處理運算。32位處理器一次只能處理32位,也就是4個位元組的數據;而64位處理器一次就能處理64位,即8個位元組的數據。如果將總長128位的指令分別按16位、32位、64位為單位進行編輯的話:32位的處理器需要4個指令,而64位處理器則只要兩個指令。顯然,在工作頻率相同的情況下,64位處理器的處理速度比32位的更快。 除了運算能力之外,與32位處理器相比,64位處理器的優勢還體現在系統對內存的控制上。由於地址使用的是特殊的整數,而64位處理器的一個ALU(算術邏輯運算器)和寄存器可以處理更大的整數,也就是更大的地址。傳統32位處理器的定址空間最大為4GB,而64位的處理器在理論上則可以達到1800萬個TB(1TB=1024GB)。

從32位到64位,表面上好象只是CPU字長增大了一倍,實際上它使定址范圍、最大內存容量、數據傳輸和處理速度、數值精度等指標也成倍增加,帶來的結果就是CPU的處理能力得到大幅提升,尤其是對強烈依賴數值運算、存在巨量數據吞吐和需要超大並發處理的應用提升效果非常明顯,如科學計算、人工智慧、平面設計、視頻處理、3D動畫和游戲、資料庫以及各種網路伺服器等。

目前主流CPU使用的64位技術主要有AMD公司的AMD64位技術、Intel公司的EM64T技術、和Intel公司的IA-64技術。其中IA-64是Intel獨立開發,不兼容32位計算機,僅用於Itanium(安騰)以及後續產品Itanium 2,人們習慣性地稱它為「純64位技術」。

64位計算技術從2004年推出至今,其產品線不斷豐富。目前,AMD方面支持64位技術的CPU有Athlon 64系列、Athlon FX系列和Opteron系列。Intel方面支持64位技術的CPU有使用Nocona核心的Xeon系列、使用Prescott 2M核心的Pentium 4 6系列和使用Prescott 2M核心的P4 EE系列。

5. 請問MD5與MD4演算法有什麼不同

md5的全稱是message-digest algorithm 5(信息-摘要演算法),在90年代初由mit laboratory for computer science和rsa data security inc的ronald l. rivest開發出來,經md2、md3和md4發展而來。它的作用是讓大容量信息在用數字簽名軟體簽署私人密匙前被"壓縮"成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的大整數)。不管是md2、md4還是md5,它們都需要獲得一個隨機長度的信息並產生一個128位的信息摘要。雖然這些演算法的結構或多或少有些相似,但md2的設計與md4和md5完全不同,那是因為md2是為8位機器做過設計優化的,而md4和md5卻是面向32位的電腦。這三個演算法的描述和c語言源代碼在internet rfcs 1321中有詳細的描述(h++p://www.ietf.org/rfc/rfc1321.txt),這是一份最權威的文檔,由ronald l. rivest在1992年8月向ieft提交。 rivest在1989年開發出md2演算法。在這個演算法中,首先對信息進行數據補位,使信息的位元組長度是16的倍數。然後,以一個16位的檢驗和追加到信息末尾。並且根據這個新產生的信息計算出散列值。後來,rogier和chauvaud發現如果忽略了檢驗和將產生md2沖突。md2演算法的加密後結果是唯一的--既沒有重復。 為了加強演算法的安全性,rivest在1990年又開發出md4演算法。md4演算法同樣需要填補信息以確保信息的位元組長度加上448後能被512整除(信息位元組長度mod 512 = 448)。然後,一個以64位二進製表示的信息的最初長度被添加進來。信息被處理成512位damg?rd/merkle迭代結構的區塊,而且每個區塊要通過三個不同步驟的處理。den boer和bosselaers以及其他人很快的發現了攻擊md4版本中第一步和第三步的漏洞。dobbertin向大家演示了如何利用一部普通的個人電腦在幾分鍾內找到md4完整版本中的沖突(這個沖突實際上是一種漏洞,它將導致對不同的內容進行加密卻可能得到相同的加密後結果)。毫無疑問,md4就此被淘汰掉了。 盡管md4演算法在安全上有個這么大的漏洞,但它對在其後才被開發出來的好幾種信息安全加密演算法的出現卻有著不可忽視的引導作用。除了md5以外,其中比較有名的還有sha-1、ripe-md以及haval等。 一年以後,即1991年,rivest開發出技術上更為趨近成熟的md5演算法。它在md4的基礎上增加了"安全-帶子"(safety-belts)的概念。雖然md5比md4稍微慢一些,但卻更為安全。這個演算法很明顯的由四個和md4設計有少許不同的步驟組成。在md5演算法中,信息-摘要的大小和填充的必要條件與md4完全相同。den boer和bosselaers曾發現md5演算法中的假沖突(pseudo-collisions),但除此之外就沒有其他被發現的加密後結果了。 van oorschot和wiener曾經考慮過一個在散列中暴力搜尋沖突的函數(brute-force hash function),而且他們猜測一個被設計專門用來搜索md5沖突的機器(這台機器在1994年的製造成本大約是一百萬美元)可以平均每24天就找到一個沖突。但單從1991年到2001年這10年間,竟沒有出現替代md5演算法的md6或被叫做其他什麼名字的新演算法這一點,我們就可以看出這個瑕疵並沒有太多的影響md5的安全性。上面所有這些都不足以成為md5的在實際應用中的問題。並且,由於md5演算法的使用不需要支付任何版權費用的,所以在一般的情況下(非絕密應用領域。但即便是應用在絕密領域內,md5也不失為一種非常優秀的中間技術),md5怎麼都應該算得上是非常安全的了。

6. MD5加密的MD4

為了加強演算法的安全性,Rivest在1990年又開發出MD4演算法。MD4演算法同樣需要填補信息以確保信息的位元組長度加上448後能被512整除(信息位元組長度mod 512 = 448)。然後,一個以64位二進製表示的信息的最初長度被添加進來。信息被處理成512位Damg?rd/Merkle迭代結構的區塊,而且每個區塊要通過三個不同步驟的處理。Den Boer和Bosselaers以及其他人很快的發現了攻擊MD4版本中第一步和第三步的漏洞。Dobbertin向大家演示了如何利用一部普通的個人電腦在幾分鍾內找到MD4完整版本中的沖突(這個沖突實際上是一種漏洞,它將導致對不同的內容進行加密卻可能得到相同的加密後結果)。毫無疑問,MD4就此被淘汰掉了。
盡管MD4演算法在安全上有個這么大的漏洞,但它對在其後才被開發出來的好幾種信息安全加密演算法的出現卻有著不可忽視的引導作用。除了MD5以外,其中比較有名的還有SHA-1、RIPE-MD以及HAVAL等。

7. md5 演算法程序+詳細注釋,高分求教!

MD5加密演算法簡介

一、綜述
MD5的全稱是message-digest algorithm 5(信息-摘要演算法),在90年代初由mit laboratory for computer science和rsa data security inc的ronald l. rivest開發出來,經md2、md3和md4發展而來。它的作用是讓大容量信息在用數字簽名軟體簽署私人密匙前被"壓縮"成一種保密的格式(就是把一 個任意長度的位元組串變換成一定長的大整數)。不管是md2、md4還是md5,它們都需要獲得一個隨機長度的信息並產生一個128位的信息摘要。雖然這些 演算法的結構或多或少有些相似,但md2的設計與md4和md5完全不同,那是因為md2是為8位機器做過設計優化的,而md4和md5卻是面向32位的電 腦。這三個演算法的描述和c語言源代碼在internet rfcs 1321中有詳細的描述(http://www.ietf.org/rfc/rfc1321.txt),這是一份最權威的文檔,由ronald l. rivest在1992年8月向ieft提交。

rivest在1989年開發出md2演算法。在這個演算法中,首先對信 息進行數據補位,使信息的位元組長度是16的倍數。然後,以一個16位的檢驗和追加到信息末尾。並且根據這個新產生的信息計算出散列值。後來,rogier 和chauvaud發現如果忽略了檢驗和將產生md2沖突。md2演算法的加密後結果是唯一的--既沒有重復。
為了加強演算法的安全性, rivest在1990年又開發出md4演算法。md4演算法同樣需要填補信息以確保信息的位元組長度加上448後能被512整除(信息位元組長度mod 512 = 448)。然後,一個以64位二進製表示的信息的最初長度被添加進來。信息被處理成512位damg?rd/merkle迭代結構的區塊,而且每個區塊要 通過三個不同步驟的處理。den boer和bosselaers以及其他人很快的發現了攻擊md4版本中第一步和第三步的漏洞。dobbertin向大家演示了如何利用一部普通的個人電 腦在幾分鍾內找到md4完整版本中的沖突(這個沖突實際上是一種漏洞,它將導致對不同的內容進行加密卻可能得到相同的加密後結果)。毫無疑問,md4就此 被淘汰掉了。
盡管md4演算法在安全上有個這么大的漏洞,但它對在其後才被開發出來的好幾種信息安全加密演算法的出現卻有著不可忽視的引導作用。除了md5以外,其中比較有名的還有sha-1、ripe-md以及haval等。
一年以後,即1991年,rivest開發出技術上更為趨近成熟的md5演算法。它在md4的基礎上增加了"安全-帶子"(safety-belts)的 概念。雖然md5比md4稍微慢一些,但卻更為安全。這個演算法很明顯的由四個和md4設計有少許不同的步驟組成。在md5演算法中,信息-摘要的大小和填充 的必要條件與md4完全相同。den boer和bosselaers曾發現md5演算法中的假沖突(pseudo-collisions),但除此之外就沒有其他被發現的加密後結果了。
van oorschot和wiener曾經考慮過一個在散列中暴力搜尋沖突的函數(brute-force hash function),而且他們猜測一個被設計專門用來搜索md5沖突的機器(這台機器在1994年的製造成本大約是一百萬美元)可以平均每24天就找到一 個沖突。但單從1991年到2001年這10年間,竟沒有出現替代md5演算法的md6或被叫做其他什麼名字的新演算法這一點,我們就可以看出這個瑕疵並沒有 太多的影響md5的安全性。上面所有這些都不足以成為md5的在實際應用中的問題。並且,由於md5演算法的使用不需要支付任何版權費用的,所以在一般的情 況下(非絕密應用領域。但即便是應用在絕密領域內,md5也不失為一種非常優秀的中間技術),md5怎麼都應該算得上是非常安全的了。

二、演算法的應用

md5的典型應用是對一段信息(message)產生信息摘要(message-digest),以防止被篡改。比如,在unix下有很多軟體在下載的時候都有一個文件名相同,文件擴展名為.md5的文件,在這個文件中通常只有一行文本,大致結構如:
md5 (tanajiya.tar.gz) =
這就是tanajiya.tar.gz文件的數字簽名。md5將整個文件當作一個大文本信息,通過其不可逆的字元串變換演算法,產生了這個唯一的md5信 息摘要。如果在以後傳播這個文件的過程中,無論文件的內容發生了任何形式的改變(包括人為修改或者下載過程中線路不穩定引起的傳輸錯誤等),只要你對這個 文件重新計算md5時就會發現信息摘要不相同,由此可以確定你得到的只是一個不正確的文件。如果再有一個第三方的認證機構,用md5還可以防止文件作者的 "抵賴",這就是所謂的數字簽名應用。
md5還廣泛用於加密和解密技術上。比如在unix系統中用戶的密碼就是以md5(或其它類似的算 法)經加密後存儲在文件系統中。當用戶登錄的時候,系統把用戶輸入的密碼計算成md5值,然後再去和保存在文件系統中的md5值進行比較,進而確定輸入的 密碼是否正確。通過這樣的步驟,系統在並不知道用戶密碼的明碼的情況下就可以確定用戶登錄系統的合法性。這不但可以避免用戶的密碼被具有系統管理員許可權的 用戶知道,而且還在一定程度上增加了密碼被破解的難度。
正是因為這個原因,現在被黑客使用最多的一種破譯密碼的方法就是一種被稱為"跑字 典"的方法。有兩種方法得到字典,一種是日常搜集的用做密碼的字元串表,另一種是用排列組合方法生成的,先用md5程序計算出這些字典項的md5值,然後 再用目標的md5值在這個字典中檢索。我們假設密碼的最大長度為8位位元組(8 bytes),同時密碼只能是字母和數字,共26+26+10=62個字元,排列組合出的字典的項數則是p(62,1)+p(62,2)….+p (62,8),那也已經是一個很天文的數字了,存儲這個字典就需要tb級的磁碟陣列,而且這種方法還有一個前提,就是能獲得目標賬戶的密碼md5值的情況 下才可以。這種加密技術被廣泛的應用於unix系統中,這也是為什麼unix系統比一般操作系統更為堅固一個重要原因。

三、演算法描述

對md5演算法簡要的敘述可以為:md5以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。
在md5演算法中,首先需要對信息進行填充,使其位元組長度對512求余的結果等於448。因此,信息的位元組長度(bits length)將被擴展至n*512+448,即n*64+56個位元組(bytes),n為一個正整數。填充的方法如下,在信息的後面填充一個1和無數個 0,直到滿足上面的條件時才停止用0對信息的填充。然後,在在這個結果後面附加一個以64位二進製表示的填充前信息長度。經過這兩步的處理,現在的信息字 節長度=n*512+448+64=(n+1)*512,即長度恰好是512的整數倍。這樣做的原因是為滿足後面處理中對信息長度的要求。
md5中有四個32位被稱作鏈接變數(chaining variable)的整數參數,他們分別為:a=0x01234567,b=0x89abcdef,c=0xfedcba98,d=0x76543210。
當設置好這四個鏈接變數後,就開始進入演算法的四輪循環運算。循環的次數是信息中512位信息分組的數目。
將上面四個鏈接變數復制到另外四個變數中:a到a,b到b,c到c,d到d。
主循環有四輪(md4隻有三輪),每輪循環都很相似。第一輪進行16次操作。每次操作對a、b、c和d中的其中三個作一次非線性函數運算,然後將所得結 果加上第四個變數,文本的一個子分組和一個常數。再將所得結果向右環移一個不定的數,並加上a、b、c或d中之一。最後用該結果取代a、b、c或d中之 一。
以一下是每次操作中用到的四個非線性函數(每輪一個)。

f(x,y,z) =(x&y)|((~x)&z)
g(x,y,z) =(x&z)|(y&(~z))
h(x,y,z) =x^y^z
i(x,y,z)=y^(x|(~z))
(&是與,|是或,~是非,^是異或)

這四個函數的說明:如果x、y和z的對應位是獨立和均勻的,那麼結果的每一位也應是獨立和均勻的。
f是一個逐位運算的函數。即,如果x,那麼y,否則z。函數h是逐位奇偶操作符。

假設mj表示消息的第j個子分組(從0到15),
<< ff(a,b,c,d,mj,s,ti) 表示 a=b+((a+(f(b,c,d)+mj+ti)
<< gg(a,b,c,d,mj,s,ti) 表示 a=b+((a+(g(b,c,d)+mj+ti)
<< hh(a,b,c,d,mj,s,ti) 表示 a=b+((a+(h(b,c,d)+mj+ti)
<< ii(a,b,c,d,mj,s,ti) 表示 a=b+((a+(i(b,c,d)+mj+ti)
<< 這四輪(64步)是:

第一輪

ff(a,b,c,d,m0,7,0xd76aa478)
ff(d,a,b,c,m1,12,0xe8c7b756)
ff(c,d,a,b,m2,17,0x242070db)
ff(b,c,d,a,m3,22,0xc1bdceee)
ff(a,b,c,d,m4,7,0xf57c0faf)
ff(d,a,b,c,m5,12,0x4787c62a)
ff(c,d,a,b,m6,17,0xa8304613)
ff(b,c,d,a,m7,22,0xfd469501)
ff(a,b,c,d,m8,7,0x698098d8)
ff(d,a,b,c,m9,12,0x8b44f7af)
ff(c,d,a,b,m10,17,0xffff5bb1)
ff(b,c,d,a,m11,22,0x895cd7be)
ff(a,b,c,d,m12,7,0x6b901122)
ff(d,a,b,c,m13,12,0xfd987193)
ff(c,d,a,b,m14,17,0xa679438e)
ff(b,c,d,a,m15,22,0x49b40821)

第二輪

gg(a,b,c,d,m1,5,0xf61e2562)
gg(d,a,b,c,m6,9,0xc040b340)
gg(c,d,a,b,m11,14,0x265e5a51)
gg(b,c,d,a,m0,20,0xe9b6c7aa)
gg(a,b,c,d,m5,5,0xd62f105d)
gg(d,a,b,c,m10,9,0x02441453)
gg(c,d,a,b,m15,14,0xd8a1e681)
gg(b,c,d,a,m4,20,0xe7d3fbc8)
gg(a,b,c,d,m9,5,0x21e1cde6)
gg(d,a,b,c,m14,9,0xc33707d6)
gg(c,d,a,b,m3,14,0xf4d50d87)
gg(b,c,d,a,m8,20,0x455a14ed)
gg(a,b,c,d,m13,5,0xa9e3e905)
gg(d,a,b,c,m2,9,0xfcefa3f8)
gg(c,d,a,b,m7,14,0x676f02d9)
gg(b,c,d,a,m12,20,0x8d2a4c8a)

第三輪

hh(a,b,c,d,m5,4,0xfffa3942)
hh(d,a,b,c,m8,11,0x8771f681)
hh(c,d,a,b,m11,16,0x6d9d6122)
hh(b,c,d,a,m14,23,0xfde5380c)
hh(a,b,c,d,m1,4,0xa4beea44)
hh(d,a,b,c,m4,11,0x4bdecfa9)
hh(c,d,a,b,m7,16,0xf6bb4b60)
hh(b,c,d,a,m10,23,0xbebfbc70)
hh(a,b,c,d,m13,4,0x289b7ec6)
hh(d,a,b,c,m0,11,0xeaa127fa)
hh(c,d,a,b,m3,16,0xd4ef3085)
hh(b,c,d,a,m6,23,0x04881d05)
hh(a,b,c,d,m9,4,0xd9d4d039)
hh(d,a,b,c,m12,11,0xe6db99e5)
hh(c,d,a,b,m15,16,0x1fa27cf8)
hh(b,c,d,a,m2,23,0xc4ac5665)

第四輪

ii(a,b,c,d,m0,6,0xf4292244)
ii(d,a,b,c,m7,10,0x432aff97)
ii(c,d,a,b,m14,15,0xab9423a7)
ii(b,c,d,a,m5,21,0xfc93a039)
ii(a,b,c,d,m12,6,0x655b59c3)
ii(d,a,b,c,m3,10,0x8f0ccc92)
ii(c,d,a,b,m10,15,0xffeff47d)
ii(b,c,d,a,m1,21,0x85845dd1)
ii(a,b,c,d,m8,6,0x6fa87e4f)
ii(d,a,b,c,m15,10,0xfe2ce6e0)
ii(c,d,a,b,m6,15,0xa3014314)
ii(b,c,d,a,m13,21,0x4e0811a1)
ii(a,b,c,d,m4,6,0xf7537e82)
ii(d,a,b,c,m11,10,0xbd3af235)
ii(c,d,a,b,m2,15,0x2ad7d2bb)
ii(b,c,d,a,m9,21,0xeb86d391)

常數ti可以如下選擇:
在第i步中,ti是4294967296*abs(sin(i))的整數部分,i的單位是弧度。(4294967296等於2的32次方)
所有這些完成之後,將a、b、c、d分別加上a、b、c、d。然後用下一分組數據繼續運行演算法,最後的輸出是a、b、c和d的級聯。
當你按照我上面所說的方法實現md5演算法以後,你可以用以下幾個信息對你做出來的程序作一個簡單的測試,看看程序有沒有錯誤。

md5 ("") =
md5 ("a") =
md5 ("abc") =
md5 ("message digest") =
md5 ("abcdefghijklmnopqrstuvwxyz") =
md5 ("") =
md5 ("1234567890") =

如果你用上面的信息分別對你做的md5演算法實例做測試,最後得出的結論和標准答案完全一樣,那我就要在這里象你道一聲祝賀了。要知道,我的程序在第一次編譯成功的時候是沒有得出和上面相同的結果的。

四、MD5的安全性

md5相對md4所作的改進:

1. 增加了第四輪;

2. 每一步均有唯一的加法常數;

3. 為減弱第二輪中函數g的對稱性從(x&y)|(x&z)|(y&z)變為(x&z)|(y&(~z));

4. 第一步加上了上一步的結果,這將引起更快的雪崩效應;

5. 改變了第二輪和第三輪中訪問消息子分組的次序,使其更不相似;

6. 近似優化了每一輪中的循環左移位移量以實現更快的雪崩效應。各輪的位移量互不相同。

8. MD4的簡介

MD4是麻省理工學院教授Ronald Rivest於1990年設計的一種信息摘要演算法。它是一種用來測試信息完整性的密碼散列函數的實行。其摘要長度為128位,一般128位長的MD4散列被表示為32位的十六進制數字。這個演算法影響了後來的演算法如MD5、SHA 家族和RIPEMD等。

9. 什麼是報文摘要演算法

本文描述了MD5報文摘要演算法,此演算法將對輸入的任意長度的信息進行計算,產生一個128位
長度的「指紋」或「報文摘要」,假定兩個不同的文件產生相同的報文摘要或由給定的報文摘要產生
原始信息在計算上是行不通的。MD5演算法適合用在數據簽名應用中,在此應用中,一個大的文件必
須在類似RSA演算法的公用密鑰系統中用私人密鑰加密前被「壓縮」在一種安全模式下。
MD5演算法能在32位機器上能以很快的速度運行。另外,MD5演算法不需要任何大型的置換列表。
此演算法編碼很簡潔。MD5演算法是MD4報文摘要演算法的擴展。MD5演算法稍慢於MD4演算法,但是在設
計上比MD4演算法更加「保守」。設計MD5是因為MD4演算法被採用的速度太快,以至於還無法證明
它的正確性,因為MD4演算法速度非常快,它處在遭受成功秘密攻擊的「邊緣」。MD5後退了一步,
它舍棄了一些速度以求更好的安全性。它集中了不同的評論家提出的建議,並採取了一些附加的優化
措施。它被放在公共的地方以求公眾的評論意見,它可能當作一個標准被採納。
作為基於OSI的應用,MD5的對象標識符是:
md5OBJECTIDENTIFIER::=
iso(1)member-body(2)US(840)rsadsi(113549)digestAlgorithm(2)5}
在X.509類型AlgorithmIdentifier[3]中,MD5演算法參數應該包括NULL類型。
2 術語和符號
本文中一個「字」是32位,一個「位元組」是8位。一系列位串可看成是一系列位元組的普通形式,
其中的連續的8位看成一個位元組,高位在前,同理一系列位元組串可看成是一系列32位的字,其中每
個連續的4個位元組當作一個字,地位在前。
我們定義x_i代表「x減去I".如果下劃線左邊的是一個表達式,則用括弧括住,如:
x_{i+1}。同樣我們用^代表求冪,這樣x^i則代表x的i次冪。
符號「+」代表字的加,X<<<s代表32位的值X循環左移s位,not(X)代表X的按位
補運算,XvY表示X和Y的按位或運算,XxorY代表X和Y的按位異或運算,XY代表
X和Y的按位與運算。
3 MD5演算法描述
我們假設有一個b位長度的輸入信號,希望產生它的報文摘要,此處b是一個非負整數,b也可
能是0,不一定必須是8的整數倍,它可能是任意大的長度。我們設想信號的比特流如下所示:
m_0m_1...m_{b-1}
下面的5步計算信息的報文摘要。
(1)補位
MD5演算法是對輸入的數據進行補位,使得如果數據位長度LEN對512求余的結果是448。即數
據擴展至K*512+448位。即K*64+56個位元組,K為整數。補位操作始終要執行,即使數據長度LEN
對512求余的結果已是448。
具體補位操作:補一個1,然後補0至滿足上述要求。總共最少要補一位,最多補512位。
(2)補數據長度
用一個64位的數字表示數據的原始長度b,把b用兩個32位數表示。那麼只取B的低64位。
當遇到b大於2^64這種極少遇到的情況時,這時,數據就被填補成長度為512位的倍數。也就是說,
此時的數據長度是16個字(32位)的整數倍數。用M[0...N-1]表示此時的數據,其中的N是16
的倍數。
(3)初始化MD緩沖器
用一個四個字的緩沖器(A,B,C,D)來計算報文摘要,A,B,C,D分別是32位的寄存器,初
始化使用的是十六進製表示的數字
A=0X01234567
B=0X89abcdef
C=0Xfedcba98
D=0X76543210
(4)處理位操作函數
首先定義4個輔助函數,每個函數的輸入是三個32位的字,輸出是一個32位的字。
X,Y,Z為32位整數。
F(X,Y,Z)=XYvnot(X)Z
G(X,Y,Z)=XZvYnot(Z)
H(X,Y,Z)=XxorYxorZ
I(X,Y,Z)=Yxor(Xvnot(Z))
這一步中使用一個64元素的常數組T[1...64],它由sine函數構成,T[i]表示數組中的第i個元
素,它的值等於經過4294967296次abs(sin(i))後的值的整數部分(其中i是弧度)。T[i]為32位
整數用16進製表示

10. md-4散列演算法的輸入信息可以為任意長,按 多少比特分組

md-4散列演算法的輸入信息可以為任意長,按 512多少比特分組

這個是考試題哦,你正在備考吧。希望你好好溫習,

有個好成績。

熱點內容
linux的路徑怎麼寫 發布:2025-01-15 17:18:49 瀏覽:185
php解壓程序 發布:2025-01-15 17:06:22 瀏覽:142
刷助力腳本 發布:2025-01-15 17:02:31 瀏覽:520
c盤里的用戶文件夾可以刪除 發布:2025-01-15 16:56:45 瀏覽:951
虛幻4編譯到哪裡 發布:2025-01-15 16:50:19 瀏覽:756
透明度漸變android 發布:2025-01-15 16:45:08 瀏覽:835
dos連接oracle資料庫 發布:2025-01-15 16:41:39 瀏覽:906
網路配置比較低怎麼做 發布:2025-01-15 16:35:38 瀏覽:362
android彈出鍵盤監聽 發布:2025-01-15 16:35:11 瀏覽:208
uz畫圖編程 發布:2025-01-15 16:32:44 瀏覽:884