當前位置:首頁 » 操作系統 » 演算法的時間復雜度的計算

演算法的時間復雜度的計算

發布時間: 2022-04-12 00:02:40

演算法時間復雜度的計算

關於時間復雜度的計算是按照運算次數來進行的,比如1題:
sum1(intn)
{intp=1,sum=0,m;//1次
for(m=1;m<=n;m++)//n+1次
{p*=m;//n次
sum+=p;}//n次
return(sum);//1次
}
最後總的次數為
1+(n+1)+n+n+1+1=3n+3
所以時間復雜度f(o)=n;(時間復雜度只管n的最高次方,不管他的系數和表達式中的常量)
其餘的一樣,不明白的可以來問我

㈡ 怎樣計算時間復雜度

在進行演算法分析時,語句總的執行次數T(n)是關於問題規模n的函數,進而分析T(n)隨n的變化情況並確定T(n)的數量級。演算法的時間復雜度,也就是演算法的時間量度,記作:T(n}=0(f(n))。它表示隨問題規模n的增大,演算法執行時間的埔長率和 f(n)的埔長率相同,稱作演算法的漸近時間復雜度,簡稱為時間復雜度。其中f( n)是問題規橫n的某個函數。

㈢ C語言演算法的時間復雜度如何計算啊

看看這個
每個循環都和上一層循環的參數有關。
所以要用地推公式:
設i(n)表示第一層循環的i為n時的循環次數,注意到他的下一層循環次數剛好就是n,分別是0,1,2...n-1
所以,把每一層循環設一個函數分別為:j(n),k(n),t(n)
則有
i(n)=j(0)+...+j(n-1)
j(n)=k(0)+...+k(n-1)
k(n)=t(0)+...+t(n-1)
i(0)=j(0)=k(0)=0
t(n)=1
而總循環數是i(0)+i(1)...+i(n-1)
可以根據遞推條件得出准確值
所以演算法復雜度是O(i(0)+i(1)...+i(n-1))
記得採納啊

㈣ 如何計算時間復雜度

1、先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出T(n)的同數量級(它的同數量級有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若T(n)/f(n)求極限可得到一常數c,則時間復雜度T(n)=O(f(n))。

2、舉例

for(i=1;i<=n;++i)

{for(j=1;j<=n;++j)

{c[ i ][ j ]=0; //該步驟屬於基本操作 執行次數:n的平方次

for(k=1;k<=n;++k)

c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //該步驟屬於基本操作 執行次數:n的三次方次}}

則有 T(n)= n的平方+n的三次方,根據上面括弧里的同數量級,我們可以確定 n的三次方為T(n)的同數量級

則有f(n)= n的三次方,然後根據T(n)/f(n)求極限可得到常數c

則該演算法的 時間復雜度:T(n)=O(n的三次方)

),線性階O(n),線性對數階O(nlog2n),平方階O(n^2),立方階O(n^3),...,

k次方階O(n^k),指數階O(2^n)。隨著問題規模n的不斷增大,上述時間復雜度不斷增大,演算法的執行效率越低。

關於對其的理解

《數據結構(C語言版)》 ------嚴蔚敏 吳偉民編著 第15頁有句話「整個演算法的執行時間與基本操作重復執行的次數成正比。」

基本操作重復執行的次數是問題規模n的某個函數f(n),於是演算法的時間量度可以記為:T(n) = O(f(n))

如果按照這么推斷,T(n)應該表示的是演算法的時間量度,也就是演算法執行的時間。

而該頁對「語句頻度」也有定義:指的是該語句重復執行的次數。

如果是基本操作所在語句重復執行的次數,那麼就該是f(n)。

上邊的n都表示的問題規模。

㈤ 如何計算一個演算法的時間復雜度

求解演算法的時間復雜度的具體步驟是:

1、找出演算法中的基本語句:

演算法中執行次數最多的那條語句就是基本語句,通常是最內層循環的循環體。

2、計算基本語句的執行次數的數量級:

(1)只需計算基本語句執行次數的數量級,這就意味著只要保證基本語句執行次數的函數中的最高次冪正確即可,可以忽略所有低次冪和最高次冪的系數。

(2)這樣能夠簡化演算法分析,並且使注意力集中在最重要的一點上:增長率。

3、用大Ο記號表示演算法的時間性能:

(1)將基本語句執行次數的數量級放入大Ο記號中。

(2)如果演算法中包含嵌套的循環,則基本語句通常是最內層的循環體,如果演算法中包含並列的循環,則將並列循環的時間復雜度相加。例如:

for(i=1;i<=n;i++)x++;for(i=1;i<=n;i++)
for(j=1;j<=n;j++)x++;

(3)第一個for循環的時間復雜度為Ο(n),第二個for循環的時間復雜度為Ο(n2),則整個演算法的時間復雜度為Ο(n+n2)=Ο(n2)。

㈥ 如何計算一個演算法的時間復雜度

你這個問題是自己想出來的吧?
第一,你指的時間復雜度是大o表示法的復雜度,也就是一個上界,但不是上確界,所以就算你以一種方式中斷排序過程,時間復雜度還是o(n*logn),假設排序過程還能執行的話。
第二,達到o(n*logn)的排序演算法,以快速排序為例,快速排序不知道你看過沒有,它不像選擇排序或者冒泡排序那樣,每一趟可以確定一直最大或者最小值,對於快速排序,每一趟排序後如果你刪掉最後一個元素將導致整個演算法失效。如果你要用這種刪除元素方法的話,只能採用冒泡排序或者選擇排序,時間復雜度是o(n^2)
所以,我猜想你是不是想做類似於在n個元素中尋找前k個最大者之類的事情(k=n-l)
如果是這樣的話,有復雜度是o(n*logk)的演算法,利用快速排序中的partition操作
經過partition後,pivot左邊的序列sa都大於pivot右邊的序列sb;
如果|sa|==k或者|sa|==k-1,則數組的前k個元素就是最大的前k個元素,演算法終止;
如果|sa|
k,則從sa中尋找前k大的元素。
一次partition(arr,begin,end)操作的復雜度為end-begin,也就是o(n),最壞情況下一次partition操作只找到第1大的那個元素,則需要進行k次partition操作,總的復雜度為o(n*k)。平均情況下每次partition都把序列均分兩半,需要logk次partition操作,總的復雜度為o(n*logk)。
由於k的上界是n,所以以n表示的總復雜度還是o(n*logn)

㈦ 時間復雜度的計算方法

時間復雜度1. 演算法復雜度分為 時間復雜度和空間復雜度。
作用: 時間復雜度是度量演算法執行的時間長短;而空間復雜度是度量演算法所需存儲空間的大小。
2. 一般情況下,演算法的基本操作重復執行的次數是模塊n的某一個函數f(n),因此,演算法的時間復雜度記做:T(n)=O(f(n))
分析:隨著模塊n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間復雜度越低,演算法的效率越高。
3. 在計算時間復雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,在找出T(n)的同數量級(它的同數量級有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若T(n)/f(n)求極限可得到一常數c,則時間復雜度T(n)=O(f(n))
例:演算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //該步驟屬於基本操作 執行次數:n的平方 次
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //該步驟屬於基本操作 執行次數:n的三次方 次
}
}
則有 T(n)= n的平方+n的三次方,根據上面空號里的同數量級,我們可以確定 n的三次方 為T(n)的同數量級
則有f(n)= n的三次方,然後根據T(n)/f(n)求極限可得到常數c
則該演算法的 時間復雜度:T(n)=O(n的三次方)
希望能解決您的問題。

㈧ 時間復雜度怎麼計算

1. 一般情況下,演算法的基本操作重復執行的次數是模塊n的某一個函數f(n),因此,演算法的時間復雜度記做:T(n)=O(f(n))
分析:隨著模塊n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間復雜度越低,演算法的效率越高。
2. 在計算時間復雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出T(n)的同數量級(它的同數量級有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若T(n)/f(n)求極限可得到一常數c,則時間復雜度T(n)=O(f(n))
例:演算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //該步驟屬於基本操作 執行次數:n的平方 次
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //該步驟屬於基本操作 執行次數:n的三次方 次
}
}
則有 T(n)= n的平方+n的三次方,根據上面括弧里的同數量級,我們可以確定 n的三次方 為T(n)的同數量級
則有f(n)= n的三次方,然後根據T(n)/f(n)求極限可得到常數c
則該演算法的 時間復雜度:T(n)=O(n的三次方)

㈨ 演算法時間復雜度怎麼算

一、概念
時間復雜度是總運算次數表達式中受n的變化影響最大的那一項(不含系數)
比如:一般總運算次數表達式類似於這樣:
a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f
a ! =0時,時間復雜度就是O(2^n);
a=0,b<>0 =>O(n^3);
a,b=0,c<>0 =>O(n^2)依此類推
eg:
(1) for(i=1;i<=n;i++) //循環了n*n次,當然是O(n^2)
for(j=1;j<=n;j++)
s++;
(2) for(i=1;i<=n;i++)//循環了(n+n-1+n-2+...+1)≈(n^2)/2,因為時間復雜度是不考慮系數的,所以也是O(n^2)
for(j=i;j<=n;j++)
s++;
(3) for(i=1;i<=n;i++)//循環了(1+2+3+...+n)≈(n^2)/2,當然也是O(n^2)
for(j=1;j<=i;j++)
s++;
(4) i=1;k=0;
while(i<=n-1){
k+=10*i; i++; }//循環了n-1≈n次,所以是O(n)(5) for(i=1;i<=n;i++)
for(j=1;j<=i;j++)
for(k=1;k<=j;k++)
x=x+1;
//循環了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(這個公式要記住哦)≈(n^3)/3,不考慮系數,自然是O(n^3)
另外,在時間復雜度中,log(2,n)(以2為底)與lg(n)(以10為底)是等價的,因為對數換底公式:
log(a,b)=log(c,b)/log(c,a)
所以,log(2,n)=log(2,10)*lg(n),忽略掉系數,二者當然是等價的
二、計算方法1.一個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機運行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時間多,哪個演算法花費的時間少就可以了。並且一個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。
一個演算法中的語句執行次數稱為語句頻度或時間頻度。記為T(n)。
2.一般情況下,演算法的基本操作重復執行的次數是模塊n的某一個函數f(n),因此,演算法的時間復雜度記做:T(n)=O(f(n))。隨著模塊n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間復雜度越低,演算法的效率越高。
在計算時間復雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出T(n)的同數量級(它的同數量級有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若T(n)/f(n)求極限可得到一常數c,則時間復雜度T(n)=O(f(n))。
3.常見的時間復雜度
按數量級遞增排列,常見的時間復雜度有:
常數階O(1), 對數階O(log2n), 線性階O(n), 線性對數階O(nlog2n), 平方階O(n^2), 立方階O(n^3),..., k次方階O(n^k), 指數階O(2^n) 。
其中,1.O(n),O(n^2), 立方階O(n^3),..., k次方階O(n^k) 為多項式階時間復雜度,分別稱為一階時間復雜度,二階時間復雜度。。。。2.O(2^n),指數階時間復雜度,該種不實用3.對數階O(log2n), 線性對數階O(nlog2n),除了常數階以外,該種效率最高
例:演算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //該步驟屬於基本操作 執行次數:n^2
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //該步驟屬於基本操作 執行次數:n^3
}
}
則有 T(n)= n^2+n^3,根據上面括弧里的同數量級,我們可以確定 n^3為T(n)的同數量級
則有f(n)= n^3,然後根據T(n)/f(n)求極限可得到常數c
則該演算法的 時間復雜度:T(n)=O(n^3)
四、

定義:如果一個問題的規模是n,解這一問題的某一演算法所需要的時間為T(n),它是n的某一函數
T(n)稱為這一演算法的「時間復雜性」。

當輸入量n逐漸加大時,時間復雜性的極限情形稱為演算法的「漸近時間復雜性」。

我們常用大O表示法表示時間復雜性,注意它是某一個演算法的時間復雜性。大O表示只是說有上界,由定義如果f(n)=O(n),那顯然成立f(n)=O(n^2),它給你一個上界,但並不是上確界,但人們在表示的時候一般都習慣表示前者。

此外,一個問題本身也有它的復雜性,如果某個演算法的復雜性到達了這個問題復雜性的下界,那就稱這樣的演算法是最佳演算法。

「大O記法」:在這種描述中使用的基本參數是
n,即問題實例的規模,把復雜性或運行時間表達為n的函數。這里的「O」表示量級 (order),比如說「二分檢索是 O(logn)的」,也就是說它需要「通過logn量級的步驟去檢索一個規模為n的數組」記法 O ( f(n) )表示當 n增大時,運行時間至多將以正比於 f(n)的速度增長。

這種漸進估計對演算法的理論分析和大致比較是非常有價值的,但在實踐中細節也可能造成差異。例如,一個低附加代價的O(n2)演算法在n較小的情況下可能比一個高附加代價的 O(nlogn)演算法運行得更快。當然,隨著n足夠大以後,具有較慢上升函數的演算法必然工作得更快。

O(1)

Temp=i;i=j;j=temp;

以上三條單個語句的頻度均為1,該程序段的執行時間是一個與問題規模n無關的常數。演算法的時間復雜度為常數階,記作T(n)=O(1)。如果演算法的執行時間不隨著問題規模n的增加而增長,即使演算法中有上千條語句,其執行時間也不過是一個較大的常數。此類演算法的時間復雜度是O(1)。

O(n^2)

2.1.
交換i和j的內容
sum=0;(一次)
for(i=1;i<=n;i++)(n次 )
for(j=1;j<=n;j++)
(n^2次 )
sum++;(n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)

2.2.
for (i=1;i<n;i++)
{
y=y+1;①
for
(j=0;j<=(2*n);j++)
x++;②
}
解:
語句1的頻度是n-1
語句2的頻度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
該程序的時間復雜度T(n)=O(n^2).

O(n)

2.3.
a=0;
b=1;①
for
(i=1;i<=n;i++) ②
{
s=a+b;③
b=a;④
a=s;⑤
}
解:語句1的頻度:2,
語句2的頻度:
n,
語句3的頻度: n-1,
語句4的頻度:n-1,
語句5的頻度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).

O(log2n
)

2.4.
i=1;①
while (i<=n)
i=i*2; ②
解: 語句1的頻度是1,
設語句2的頻度是f(n),則:2^f(n)<=n;f(n)<=log2n
取最大值f(n)=
log2n,
T(n)=O(log2n )

O(n^3)

2.5.
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解:當i=m,
j=k的時候,內層循環的次數為k當i=m時, j 可以取 0,1,...,m-1 , 所以這里最內循環共進行了0+1+...+m-1=(m-1)m/2次所以,i從0取到n, 則循環共進行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以時間復雜度為O(n^3).


我們還應該區分演算法的最壞情況的行為和期望行為。如快速排序的最
壞情況運行時間是 O(n^2),但期望時間是 O(nlogn)。通過每次都仔細 地選擇基準值,我們有可能把平方情況 (即O(n^2)情況)的概率減小到幾乎等於 0。在實際中,精心實現的快速排序一般都能以 (O(nlogn)時間運行。
下面是一些常用的記法:


訪問數組中的元素是常數時間操作,或說O(1)操作。一個演算法如 果能在每個步驟去掉一半數據元素,如二分檢索,通常它就取 O(logn)時間。用strcmp比較兩個具有n個字元的串需要O(n)時間。常規的矩陣乘演算法是O(n^3),因為算出每個元素都需要將n對
元素相乘並加到一起,所有元素的個數是n^2。
指數時間演算法通常來源於需要求出所有可能結果。例如,n個元 素的集合共有2n個子集,所以要求出所有子集的演算法將是O(2n)的。指數演算法一般說來是太復雜了,除非n的值非常小,因為,在 這個問題中增加一個元素就導致運行時間加倍。不幸的是,確實有許多問題 (如著名的「巡迴售貨員問題」 ),到目前為止找到的演算法都是指數的。如果我們真的遇到這種情況,通常應該用尋找近似最佳結果的演算法替代之。

熱點內容
linux文件最後一行 發布:2024-11-15 10:44:11 瀏覽:612
怎麼根據序列號查配置 發布:2024-11-15 10:31:52 瀏覽:348
mysql查看資料庫位置 發布:2024-11-15 10:25:16 瀏覽:439
需要學Python 發布:2024-11-15 10:23:41 瀏覽:836
如何製作安卓平板軟體 發布:2024-11-15 10:23:39 瀏覽:215
手機忘記密碼被鎖預示著什麼 發布:2024-11-15 10:22:15 瀏覽:193
android圖片管理 發布:2024-11-15 10:13:02 瀏覽:9
演算法微調 發布:2024-11-15 10:07:44 瀏覽:542
python列表查詢 發布:2024-11-15 10:06:08 瀏覽:133
保存在伺服器的圖片如何刪除 發布:2024-11-15 09:55:09 瀏覽:801