當前位置:首頁 » 操作系統 » 貪心演算法流程圖

貪心演算法流程圖

發布時間: 2022-03-14 11:10:34

㈠ 求一個演算法(貪心演算法)

貪心演算法

一、演算法思想

貪心法的基本思路:
——從問題的某一個初始解出發逐步逼近給定的目標,以盡可能快的地求得更好的解。當達到某演算法中的某一步不能再繼續前進時,演算法停止。
該演算法存在問題:
1. 不能保證求得的最後解是最佳的;
2. 不能用來求最大或最小解問題;
3. 只能求滿足某些約束條件的可行解的范圍。

實現該演算法的過程:
從問題的某一初始解出發;
while 能朝給定總目標前進一步 do
求出可行解的一個解元素;
由所有解元素組合成問題的一個可行解;

二、例題分析

1、[背包問題]有一個背包,背包容量是M=150。有7個物品,物品可以分割成任意大小。
要求盡可能讓裝入背包中的物品總價值最大,但不能超過總容量。

物品 A B C D E F G
重量 35 30 60 50 40 10 25
價值 10 40 30 50 35 40 30

分析:

目標函數: ∑pi最大
約束條件是裝入的物品總重量不超過背包容量:∑wi<=M( M=150)

(1)根據貪心的策略,每次挑選價值最大的物品裝入背包,得到的結果是否最優?
(2)每次挑選所佔重量最小的物品裝入是否能得到最優解?
(3)每次選取單位重量價值最大的物品,成為解本題的策略。 ?

值得注意的是,貪心演算法並不是完全不可以使用,貪心策略一旦經過證明成立後,它就是一種高效的演算法。
貪心演算法還是很常見的演算法之一,這是由於它簡單易行,構造貪心策略不是很困難。
可惜的是,它需要證明後才能真正運用到題目的演算法中。
一般來說,貪心演算法的證明圍繞著:整個問題的最優解一定由在貪心策略中存在的子問題的最優解得來的。
對於例題中的3種貪心策略,都是無法成立(無法被證明)的,解釋如下:
(1)貪心策略:選取價值最大者。反例:
W=30
物品:A B C
重量:28 12 12
價值:30 20 20
根據策略,首先選取物品A,接下來就無法再選取了,可是,選取B、C則更好。
(2)貪心策略:選取重量最小。它的反例與第一種策略的反例差不多。
(3)貪心策略:選取單位重量價值最大的物品。反例:
W=30
物品:A B C
重量:28 20 10
價值:28 20 10
根據策略,三種物品單位重量價值一樣,程序無法依據現有策略作出判斷,如果選擇A,則答案錯誤。

所以需要說明的是,貪心演算法可以與隨機化演算法一起使用,具體的例子就不再多舉了。(因為這一類演算法普及性不高,而且技術含量是非常高的,需要通過一些反例確定隨機的對象是什麼,隨機程度如何,但也是不能保證完全正確,只能是極大的幾率正確)

================================
三個經典的貪心演算法

有人說貪心演算法是最簡單的演算法,原因很簡單:你我其實都很貪,根本不用學。有人說貪心演算法是最復雜的演算法,原因也很簡單:這世上貪的人太多了,那輪到你我的份?

不論難度如何,貪心演算法都是一個很重要的演算法,我在網上N多Online Judge中的題目中,總結了三類較為常見,也十分經典的貪心演算法,發布在這兒Just For Fun。

(註:由於沒有現成的名字可用,這三種類型貪心演算法的名字都是我自己取的,如果你聽著別扭,請見諒。)

No 1.線段覆蓋(linescover)

題目大意:

在一維空間中告訴你N條線段的起始坐標與終止坐標,要求求出這些線段一共覆蓋了多大的長度。

解題思路:

將線段按其坐標進行排序(排序的具體方法:按起始坐標排,起始坐標相同的按終止坐標排,都是小在前大在後),使之依次遞增,並按順序分別編號為X(i),X(i).a代表其起始坐標,X(i).b代表其終止坐標。

然後按排好的順序依次處理:定義一個變數last記錄考慮到當前線段之時被線段覆蓋的最大的坐標值,再定義一個變數length記錄當前線段覆蓋的長度。對於後面的線段,我們把它看成由兩個部分組成,即把它分成last之前的線段和last之後的線段。(如果線段全部處在last之後,其last之前的部分不存在。)由於我們排過序,我們可以肯定當前考慮的線段X(i)其處在last之前的部分不會對length造成影響(因為X(i-1).b=last,X(i).a>=X(i-1).a,即X(i)在last之前的部分所處位置肯定被線段X(i-1)覆蓋過),所以會對length產生影響的即是X(i)處在last之後的部分。

所以我們可以依次對每條線段做如下處理:(初始化length為零,last為負無窮)

length+=X(i).b-last (X(i).a<=last 且 X(i).b>=last)

length+=X(i).b-X(i).a (X(i).a>last)

last=X(i).b;

最後length就為我們所需要的答案。

No 2.最優數對(bestpair)

題目大意:

按遞增的順序告訴你N個正整數和一個實數P,要求求出求出該數列中的比例最接近P的兩個數(保證絕對沒有兩個數使得其比值為P)。

解題思路:

定義兩個指針i和j,先初始化i=j=1,然後進行如下操作:

當code[j]/code[i]>p時,inc(j);

當code[j]/code[i]<p時,inc(i)。

記錄其中產生的最優值即為答案。

No 3.連續數之和最大值(maxsum)

題目大意:

給出一個長度為N的數列(數列中至少有一個正數),要求求出其中的連續數之和的最大值。(也可以加入a和b來限制連續數的長度不小於a且不大於b)。

解題思路:

先說不加限制的那種,定義一個統計變數tot,然後用循環進行如下操作:inc(tot,item) 其中如果出現tot<0的情況,則將tot賦值為0。在循環過程之中tot出現的最大值即為答案。

如果加入了限制條件的話,問題就變得難一些了(這句真的不是廢話)。為此我們先定義數組sum[i]來表示code[1]到code[i]之和(這樣的話code[a]~code[b]的和我們就可以用sum[b]-sum[a-1]來表示了。)。

再維護一個數組hash[i]來表示滿足條件的sum[a-1]的下標,並使之按遞增順序排列,這樣當前以第i的數為終止的數列的最大值肯定就是sum[i]-sum[hash[1]]。

現在我們來討論hash數組之中的數據需要滿足的條件和如何維護的具體問題:

當考慮到以第i個數為結尾時,hash[i]所表示的下標需要滿足的第一個條件就是題目規定的長度限制,我們需要實時的加入滿足長度規定的下標,刪除不符合要求的下標。其次,與不加限制條件時相同,若sum[i]-sum[hash[1]]的值小於零,則清空數組hash。

維護時可以這樣,當考慮到第i個數時,我們就將下標i-a+1加入到hash中,因為hash中原來已經排好序,因此我們我們可以用插入排序來維護hash的遞增性,然後我們考察hash[1],若hash[1]<i-b+1,則證明其已超出長度限制,我們就將其刪除,接著再考慮更新後的hash[1],如此重復直至找到一個滿足條件的hash[1]為止。

我們可以用鏈表來表示hash,這樣就可以減少數據加入和刪除時頻繁數據移動的時間消耗。

記錄下sum[i]-sum[hash[1]]的最大值即為答案。

㈡ 誰能幫我畫個PRIM演算法的流程圖

對於這種比較高級的演算法代碼直接看程序會比較蒙,你就光看我的演算法流程吧,prim演算法用的是貪心演算法的思想,即每一步都作出局部的最優解,關於prim演算法為什麼能用貪心演算法的證明,你可以參考《計算機演算法設計與分析》這本書。(我反正不想看那麼無聊的證明,也看不明白,呵呵)。
定義一個集合v 和 a,其中v是全體節點(總節點數為n)的集合,v初始為空。定義一個記錄最小生成數邊數的變數c。
1.在v中任選一個節點,並加入到a中。在v中刪除該節點。

2.選一個在所有連接v集合和a集合權值最小的邊(即一個節點是v的某一個節點,一個是a中的某一個節點)

3。將兩個節點連接。將c加1

4.將第3步才在v中節點刪除並加入到a中.

5.如果c為n-1則完成最小生成樹,否則回到第2步。

明白了沒?不明白再問我啊,希望對你有所幫助。

㈢ Python貪心演算法

所謂貪心演算法是指在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優加以考慮,它所做出的僅僅是在某種意義上的局部最優解。下面讓我們來看一個經典的例題。假設超市的收銀櫃中有1分、2分、5分、1角、2角、5角、1元的硬幣。
顧客結賬如果需要找零錢時,收銀員希望將最少的硬幣數找出給顧客,那麼,給定需要找的零錢數目,如何求得最少的硬幣數呢?這個找零錢的基本思路:每次都選擇面值不超過需要找給顧客的錢最大面值的硬幣。
我們可以從面值最大的硬幣開始,然後依次遞減(圖1)。
首先定義列表d存儲已有幣值。並且定義d_num存儲每種幣值的數量。通過循環遍歷的方法計算出收銀員擁有錢的總金額並保存在變數S中,要找的零錢變數為sum。當找零的金_比收銀員的總金額多時,無法進行找零,提示報錯。要想用的錢幣數量最少,我們從面值最大的幣值開始遍歷。這里也就是我們貪心演算法的核心步驟。計算出每種硬幣所需要的數量,不斷地更新硬幣個數與硬幣面值,最終獲得一個符合要求的組合(圖2)。
貪心演算法在對問題求解時,不是對所有問題都能得到整體最優解,也不是從整體上去考慮,做出的只是在某種意義上的局部最優解。從面值最大的硬幣開始依次遞減,尋找可用的方法。一般貪心演算法並不能保證是最佳的解決方法,這是因為:總是從局部出發沒有從整體考慮,只能確定某些問題是有解的,優點是演算法簡單。常用來解決求最大值或最小值的問題。來源:電腦報

㈣ 能用貪心演算法求解的問題應該具備哪些條件

貪心演算法是種策略,思想。。。它並沒有固定的模式比如最簡單的背包問題用貪心的思想去做,就可能有很多種方法性價比最高的、價值最高的、重量最輕的而你沒辦法確保你所選擇的貪心策略對所有的情況都是絕對最優的動態規劃的思想是分治+解決沉余把一個復雜的問題分解成一塊一塊的小問題每一個小問題中得到最優解再從這些最優解中獲取更優的答案典型的例子數塔問題畫個圖就能看出來

㈤ 貪心演算法 動態規劃 它們有什麼區別程序設計

這個很簡單啦,貪心演算法是為了使得每一步都得到最好的,而最後的結果卻不一定是最好的。
但是動態規劃求出的肯定是最優解!!!!

㈥ 設計貪心演算法

就是這個圖片放大看吧

㈦ 用貪心演算法求解背包問題的最優解。

你這個是部分背包么?也就是說物品可以隨意分割?
那麼可以先算出單位重量物品的價值,然後只要從高價值到低價值放入就行了,按p[i]/w[i]降序排序,然後一件一件加,加滿為止!
貪心的思路是:加最少的重量得到更大的價值!
算出單位價值為{6,4,3,2,7,5,2}
加的順序即為5,1,6,2,3,4/7
如果重量不超過就全部都加,超過就加滿為止
不懂可問望採納!
推薦看dd_engi的背包九講,神級背包教程!在此膜拜dd_engi神牛~

㈧ 一個關於貪心演算法的課程設計

string sdx2 = "\u996d";
是按unicode編碼輸出的
「飯」的unicode編碼是「996d」

㈨ 貪心演算法之會場安排問題

三星演算法之間最好還是不要安排互相的問題,這樣不利於你們倆的關系的便有好。

㈩ 貪心演算法中的matlab演算法怎麼做

1.數論演算法
求兩數的最大公約數
function gcd(a,b:integer):integer;
begin
if b=0 then gcd:=a
else gcd:=gcd (b,a mod b);
end ;

求兩數的最小公倍數
function lcm(a,b:integer):integer;
begin
if a< b then swap(a,b);
lcm:=a;
while lcm mod b >0 do inc(lcm,a);
end;

素數的求法
A.小范圍內判斷一個數是否為質數:
function prime (n: integer): Boolean;
var I: integer;
begin
for I:=2 to trunc(sqrt(n)) do
if n mod I=0 then
begin
prime:=false; exit;
end;
prime:=true;
end;

B.判斷longint范圍內的數是否為素數(包含求50000以內的素數表):
procere getprime;
var
i,j:longint;
p:array[1..50000] of boolean;
begin
fillchar(p,sizeof(p),true);
p[1]:=false;
i:=2;
while i< 50000 do
begin
if p then
begin
j:=i*2;
while j< 50000 do
begin
p[j]:=false;
inc(j,i);
end;
end;
inc(i);
end;
l:=0;
for i:=1 to 50000 do
if p then
begin
inc(l);
pr[l]:=i;
end;
end;{getprime}
function prime(x:longint):integer;
var i:integer;
begin
prime:=false;
for i:=1 to l do
if pr >=x then break
else if x mod pr=0 then exit;
prime:=true;
end;{prime}

2.

3.

4.求最小生成樹
A.Prim演算法:
procere prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do
begin
lowcost:=cost[v0,i];
closest:=v0;
end;
for i:=1 to n-1 do
begin
{尋找離生成樹最近的未加入頂點k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]< min) and (lowcost[j]< >0) then
begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {將頂點k加入生成樹}
{生成樹中增加一條新的邊k到closest[k]}
{修正各點的lowcost和closest值}
for j:=1 to n do
if cost[k,j]< lwocost[j] then
begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;{prim}
B.Kruskal演算法:(貪心)
按權值遞增順序刪去圖中的邊,若不形成迴路則將此邊加入最小生成樹。
function find(v:integer):integer; {返回頂點v所在的集合}
var i:integer;
begin
i:=1;
while (i< =n) and (not v in vset) do inc(i);
if i< =n then find:=i
else find:=0;
end;
procere kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset:=;{初始化定義n個集合,第I個集合包含一個元素I}
p:=n-1; q:=1; tot:=0; {p為尚待加入的邊數,q為邊集指針}
sort;
{對所有邊按權值遞增排序,存於e[I]中,e[I].v1與e[I].v2為邊I所連接的兩個頂點的序號,e[I].len為第I條邊的長度}
while p >0 do
begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i< >j then
begin
inc(tot,e[q].len);
vset:=vset+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;

5.最短路徑
A.標號法求解單源點最短路徑:
var
a:array[1..maxn,1..maxn] of integer;
b:array[1..maxn] of integer; {b指頂點i到源點的最短路徑}
mark:array[1..maxn] of boolean;

procere bhf;
var
best,best_j:integer;
begin
fillchar(mark,sizeof(mark),false);
mark[1]:=true; b[1]:=0;{1為源點}
repeat
best:=0;
for i:=1 to n do
If mark then {對每一個已計算出最短路徑的點}
for j:=1 to n do
if (not mark[j]) and (a[i,j] >0) then
if (best=0) or (b+a[i,j]< best) then
begin
best:=b+a[i,j]; best_j:=j;
end;
if best >0 then
begin
b[best_j]:=best;mark[best_j]:=true;
end;
until best=0;
end;{bhf}

B.Floyed演算法求解所有頂點對之間的最短路徑:
procere floyed;
begin
for I:=1 to n do
for j:=1 to n do
if a[I,j] >0 then p[I,j]:=I else p[I,j]:=0;
{p[I,j]表示I到j的最短路徑上j的前驅結點}
for k:=1 to n do {枚舉中間結點}
for i:=1 to n do
for j:=1 to n do
if a[i,k]+a[j,k]< a[i,j] then
begin
a[i,j]:=a[i,k]+a[k,j];
p[I,j]:=p[k,j];
end;
end;
C. Dijkstra 演算法:
類似標號法,本質為貪心演算法。
var
a:array[1..maxn,1..maxn] of integer;
b,pre:array[1..maxn] of integer; {pre指最短路徑上I的前驅結點}
mark:array[1..maxn] of boolean;
procere dijkstra(v0:integer);
begin
fillchar(mark,sizeof(mark),false);
for i:=1 to n do
begin
d:=a[v0,i];
if d< >0 then pre:=v0 else pre:=0;
end;
mark[v0]:=true;
repeat {每循環一次加入一個離1集合最近的結點並調整其他結點的參數}
min:=maxint; u:=0; {u記錄離1集合最近的結點}
for i:=1 to n do
if (not mark) and (d< min) then
begin
u:=i; min:=d;
end;
if u< >0 then
begin
mark:=true;
for i:=1 to n do
if (not mark) and (a[u,i]+d< d) then
begin
d:=a[u,i]+d;
pre:=u;
end;
end;
until u=0;
end;
D.計算圖的傳遞閉包
Procere Longlink;
Var
T:array[1..maxn,1..maxn] of boolean;
Begin
Fillchar(t,sizeof(t),false);
For k:=1 to n do
For I:=1 to n do
For j:=1 to n do
T[I,j]:=t[I,j] or (t[I,k] and t[k,j]);
End;

熱點內容
rc4android 發布:2024-11-15 15:27:25 瀏覽:741
電腦伺服器機箱圖片 發布:2024-11-15 15:27:18 瀏覽:114
網頁緩存文件提取 發布:2024-11-15 15:24:42 瀏覽:144
sqlserver提高 發布:2024-11-15 15:24:40 瀏覽:659
太空工程師編程模塊 發布:2024-11-15 15:15:27 瀏覽:68
apache壓縮 發布:2024-11-15 15:11:54 瀏覽:245
java比較三個數 發布:2024-11-15 15:08:39 瀏覽:835
fml加密 發布:2024-11-15 15:05:56 瀏覽:883
存儲上市龍頭 發布:2024-11-15 14:52:14 瀏覽:38
我的世界伺服器怎麼重置教學 發布:2024-11-15 14:52:13 瀏覽:124