當前位置:首頁 » 操作系統 » linux進程同步

linux進程同步

發布時間: 2022-03-07 06:24:24

『壹』 linux多進程和線程同步的幾種方式

Linux 線程同步的三種方法
線程的最大特點是資源的共享性,但資源共享中的同步問題是多線程編程的難點。linux下提供了多種方式來處理線程同步,最常用的是互斥鎖、條件變數和信號量。
一、互斥鎖(mutex)
通過鎖機制實現線程間的同步。
初始化鎖。在Linux下,線程的互斥量數據類型是pthread_mutex_t。在使用前,要對它進行初始化。
靜態分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
動態分配:int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);
加鎖。對共享資源的訪問,要對互斥量進行加鎖,如果互斥量已經上了鎖,調用線程會阻塞,直到互斥量被解鎖。
int pthread_mutex_lock(pthread_mutex *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
解鎖。在完成了對共享資源的訪問後,要對互斥量進行解鎖。
int pthread_mutex_unlock(pthread_mutex_t *mutex);
銷毀鎖。鎖在是使用完成後,需要進行銷毀以釋放資源。
int pthread_mutex_destroy(pthread_mutex *mutex);
[csharp] view plain
#include <cstdio>
#include <cstdlib>
#include <unistd.h>
#include <pthread.h>
#include "iostream"
using namespace std;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int tmp;
void* thread(void *arg)
{
cout << "thread id is " << pthread_self() << endl;
pthread_mutex_lock(&mutex);
tmp = 12;
cout << "Now a is " << tmp << endl;
pthread_mutex_unlock(&mutex);
return NULL;
}
int main()
{
pthread_t id;
cout << "main thread id is " << pthread_self() << endl;
tmp = 3;
cout << "In main func tmp = " << tmp << endl;
if (!pthread_create(&id, NULL, thread, NULL))
{
cout << "Create thread success!" << endl;
}
else
{
cout << "Create thread failed!" << endl;
}
pthread_join(id, NULL);
pthread_mutex_destroy(&mutex);
return 0;
}
//編譯:g++ -o thread testthread.cpp -lpthread
二、條件變數(cond)
互斥鎖不同,條件變數是用來等待而不是用來上鎖的。條件變數用來自動阻塞一個線程,直到某特殊情況發生為止。通常條件變數和互斥鎖同時使用。條件變數分為兩部分: 條件和變數。條件本身是由互斥量保護的。線程在改變條件狀態前先要鎖住互斥量。條件變數使我們可以睡眠等待某種條件出現。條件變數是利用線程間共享的全局變數進行同步的一種機制,主要包括兩個動作:一個線程等待"條件變數的條件成立"而掛起;另一個線程使"條件成立"(給出條件成立信號)。條件的檢測是在互斥鎖的保護下進行的。如果一個條件為假,一個線程自動阻塞,並釋放等待狀態改變的互斥鎖。如果另一個線程改變了條件,它發信號給關聯的條件變數,喚醒一個或多個等待它的線程,重新獲得互斥鎖,重新評價條件。如果兩進程共享可讀寫的內存,條件變數可以被用來實現這兩進程間的線程同步。
初始化條件變數。
靜態態初始化,pthread_cond_t cond = PTHREAD_COND_INITIALIER;
動態初始化,int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);
等待條件成立。釋放鎖,同時阻塞等待條件變數為真才行。timewait()設置等待時間,仍未signal,返回ETIMEOUT(加鎖保證只有一個線程wait)
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime);
激活條件變數。pthread_cond_signal,pthread_cond_broadcast(激活所有等待線程)
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond); //解除所有線程的阻塞
清除條件變數。無線程等待,否則返回EBUSY
int pthread_cond_destroy(pthread_cond_t *cond);
[cpp] view plain
#include <stdio.h>
#include <pthread.h>
#include "stdlib.h"
#include "unistd.h"
pthread_mutex_t mutex;
pthread_cond_t cond;
void hander(void *arg)
{
free(arg);
(void)pthread_mutex_unlock(&mutex);
}
void *thread1(void *arg)
{
pthread_cleanup_push(hander, &mutex);
while(1)
{
printf("thread1 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread1 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep(4);
}
pthread_cleanup_pop(0);
}
void *thread2(void *arg)
{
while(1)
{
printf("thread2 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread2 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep(1);
}
}
int main()
{
pthread_t thid1,thid2;
printf("condition variable study!\n");
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cond, NULL);
pthread_create(&thid1, NULL, thread1, NULL);
pthread_create(&thid2, NULL, thread2, NULL);
sleep(1);
do
{
pthread_cond_signal(&cond);
}while(1);
sleep(20);
pthread_exit(0);
return 0;
}
[cpp] view plain
#include <pthread.h>
#include <unistd.h>
#include "stdio.h"
#include "stdlib.h"
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
struct node
{
int n_number;
struct node *n_next;
}*head = NULL;

static void cleanup_handler(void *arg)
{
printf("Cleanup handler of second thread./n");
free(arg);
(void)pthread_mutex_unlock(&mtx);
}
static void *thread_func(void *arg)
{
struct node *p = NULL;
pthread_cleanup_push(cleanup_handler, p);
while (1)
{
//這個mutex主要是用來保證pthread_cond_wait的並發性
pthread_mutex_lock(&mtx);
while (head == NULL)
{
//這個while要特別說明一下,單個pthread_cond_wait功能很完善,為何
//這里要有一個while (head == NULL)呢?因為pthread_cond_wait里的線
//程可能會被意外喚醒,如果這個時候head != NULL,則不是我們想要的情況。
//這個時候,應該讓線程繼續進入pthread_cond_wait
// pthread_cond_wait會先解除之前的pthread_mutex_lock鎖定的mtx,
//然後阻塞在等待對列里休眠,直到再次被喚醒(大多數情況下是等待的條件成立
//而被喚醒,喚醒後,該進程會先鎖定先pthread_mutex_lock(&mtx);,再讀取資源
//用這個流程是比較清楚的
pthread_cond_wait(&cond, &mtx);
p = head;
head = head->n_next;
printf("Got %d from front of queue/n", p->n_number);
free(p);
}
pthread_mutex_unlock(&mtx); //臨界區數據操作完畢,釋放互斥鎖
}
pthread_cleanup_pop(0);
return 0;
}
int main(void)
{
pthread_t tid;
int i;
struct node *p;
//子線程會一直等待資源,類似生產者和消費者,但是這里的消費者可以是多個消費者,而
//不僅僅支持普通的單個消費者,這個模型雖然簡單,但是很強大
pthread_create(&tid, NULL, thread_func, NULL);
sleep(1);
for (i = 0; i < 10; i++)
{
p = (struct node*)malloc(sizeof(struct node));
p->n_number = i;
pthread_mutex_lock(&mtx); //需要操作head這個臨界資源,先加鎖,
p->n_next = head;
head = p;
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mtx); //解鎖
sleep(1);
}
printf("thread 1 wanna end the line.So cancel thread 2./n");
//關於pthread_cancel,有一點額外的說明,它是從外部終止子線程,子線程會在最近的取消點,退出
//線程,而在我們的代碼里,最近的取消點肯定就是pthread_cond_wait()了。
pthread_cancel(tid);
pthread_join(tid, NULL);
printf("All done -- exiting/n");
return 0;
}
三、信號量(sem)
如同進程一樣,線程也可以通過信號量來實現通信,雖然是輕量級的。信號量函數的名字都以"sem_"打頭。線程使用的基本信號量函數有四個。
信號量初始化。
int sem_init (sem_t *sem , int pshared, unsigned int value);
這是對由sem指定的信號量進行初始化,設置好它的共享選項(linux 只支持為0,即表示它是當前進程的局部信號量),然後給它一個初始值VALUE。
等待信號量。給信號量減1,然後等待直到信號量的值大於0。
int sem_wait(sem_t *sem);
釋放信號量。信號量值加1。並通知其他等待線程。
int sem_post(sem_t *sem);
銷毀信號量。我們用完信號量後都它進行清理。歸還佔有的一切資源。
int sem_destroy(sem_t *sem);
[cpp] view plain
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>
#include <errno.h>
#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__);return;}
typedef struct _PrivInfo
{
sem_t s1;
sem_t s2;
time_t end_time;
}PrivInfo;

static void info_init (PrivInfo* thiz);
static void info_destroy (PrivInfo* thiz);
static void* pthread_func_1 (PrivInfo* thiz);
static void* pthread_func_2 (PrivInfo* thiz);

int main (int argc, char** argv)
{
pthread_t pt_1 = 0;
pthread_t pt_2 = 0;
int ret = 0;
PrivInfo* thiz = NULL;
thiz = (PrivInfo* )malloc (sizeof (PrivInfo));
if (thiz == NULL)
{
printf ("[%s]: Failed to malloc priv./n");
return -1;
}
info_init (thiz);
ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);
if (ret != 0)
{
perror ("pthread_1_create:");
}
ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);
if (ret != 0)
{
perror ("pthread_2_create:");
}
pthread_join (pt_1, NULL);
pthread_join (pt_2, NULL);
info_destroy (thiz);
return 0;
}
static void info_init (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
thiz->end_time = time(NULL) + 10;
sem_init (&thiz->s1, 0, 1);
sem_init (&thiz->s2, 0, 0);
return;
}
static void info_destroy (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
sem_destroy (&thiz->s1);
sem_destroy (&thiz->s2);
free (thiz);
thiz = NULL;
return;
}
static void* pthread_func_1 (PrivInfo* thiz)
{
return_if_fail(thiz != NULL);
while (time(NULL) < thiz->end_time)
{
sem_wait (&thiz->s2);
printf ("pthread1: pthread1 get the lock./n");
sem_post (&thiz->s1);
printf ("pthread1: pthread1 unlock/n");
sleep (1);
}
return;
}
static void* pthread_func_2 (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
while (time (NULL) < thiz->end_time)
{
sem_wait (&thiz->s1);
printf ("pthread2: pthread2 get the unlock./n");
sem_post (&thiz->s2);
printf ("pthread2: pthread2 unlock./n");
sleep (1);
}
return;
}

『貳』 Linux下C實現多進程同步並行

你去查一下OpenMP相關書籍,用OpenMP庫函數實現吧,Linux的gcc編譯器4.2版以後開始內置OpenMP並行支持,源程序里多寫兩句話就搞定的事情,不過OpenMP建立的是輕量級進程(在Windows下叫線程的東西)。

如果要用嚴格意義上的「進程」實現,還有一個多線程並行的工具是MPICH2,設計目的是多計算機分布式並行計算的,當然也能用在單一計算機上。

『叄』 linux 進程調度和同步一樣嗎

首先你得指導進程的調度和同步分別是什麼,去查查

『肆』 linux線程同步和進程同步的區別

(1)管道(pipe)和有名管道(FIFO) (2)信號(signal) (3)消息隊列 (4)共享內存 (5)信號量 (6)套接字(socket)

『伍』 在linux下用c語言實現用多進程同步方法演示「生產者-消費者」問題

這個問題需要的知識主要包括:

1 多進程間進行通信;

2 使用同步信號量(semaphore)和互斥信號量(mutex)進行數據保護。

參考代碼如下,可以參照注釋輔助理解:

#include<stdio.h>
#include<stdlib.h>
#include<unistd.h>
#include<pthread.h>
#include<semaphore.h>
#defineN2//消費者或者生產者的數目
#defineM10//緩沖數目
intin=0;//生產者放置產品的位置
intout=0;//消費者取產品的位置
intbuff[M]={0};//緩沖初始化為0,開始時沒有產品
sem_tempty_sem;//同步信號量,當滿了時阻止生產者放產品
sem_tfull_sem;//同步信號量,當沒產品時阻止消費者消費
pthread_mutex_tmutex;//互斥信號量,一次只有一個線程訪問緩沖
intproct_id=0;//生產者id
intprochase_id=0;//消費者id
/*列印緩沖情況*/
voidprint()
{
inti;
for(i=0;i<M;i++)
printf("%d",buff[i]);
printf(" ");
}
/*生產者方法*/
void*proct()
{
intid=++proct_id;

while(1)
{
//用sleep的數量可以調節生產和消費的速度,便於觀察
sleep(1);
//sleep(1);

sem_wait(&empty_sem);
pthread_mutex_lock(&mutex);

in=in%M;
printf("proct%din%d.like: ",id,in);

buff[in]=1;
print();
++in;

pthread_mutex_unlock(&mutex);
sem_post(&full_sem);
}
}
/*消費者方法*/
void*prochase()
{
intid=++prochase_id;
while(1)
{
//用sleep的數量可以調節生產和消費的速度,便於觀察
sleep(1);
//sleep(1);

sem_wait(&full_sem);
pthread_mutex_lock(&mutex);

out=out%M;
printf("prochase%din%d.like: ",id,out);

buff[out]=0;
print();
++out;

pthread_mutex_unlock(&mutex);
sem_post(&empty_sem);
}
}
intmain()
{
pthread_tid1[N];
pthread_tid2[N];
inti;
intret[N];

//初始化同步信號量
intini1=sem_init(&empty_sem,0,M);
intini2=sem_init(&full_sem,0,0);
if(ini1&&ini2!=0)
{
printf("seminitfailed ");
exit(1);
}
//初始化互斥信號量
intini3=pthread_mutex_init(&mutex,NULL);
if(ini3!=0)
{
printf("mutexinitfailed ");
exit(1);
}
//創建N個生產者線程
for(i=0;i<N;i++)
{
ret[i]=pthread_create(&id1[i],NULL,proct,(void*)(&i));
if(ret[i]!=0)
{
printf("proct%dcreationfailed ",i);
exit(1);
}
}
//創建N個消費者線程
for(i=0;i<N;i++)
{
ret[i]=pthread_create(&id2[i],NULL,prochase,NULL);
if(ret[i]!=0)
{
printf("prochase%dcreationfailed ",i);
exit(1);
}
}
//銷毀線程
for(i=0;i<N;i++)
{
pthread_join(id1[i],NULL);
pthread_join(id2[i],NULL);
}
exit(0);
}

在Linux下編譯的時候,要在編譯命令中加入選項-lpthread以包含多線程支持。比如存儲的C文件為demo.c,要生成的可執行文件為demo。可以使用命令:

gcc demo.c -o demo -lpthread

程序中為便於觀察,使用了sleep(1);來暫停運行,所以查看輸出的時候可以看到,輸出是每秒列印一次的。

『陸』 linux 下進程間的同步機制有哪些

感覺你提問的應該是進程間的通信。而通訊主要有以下6中方式:
1.管道(Pipe)及有名管道(named pipe):管道可用於具有親緣關系進程間的通信,有名管道克服了管道沒有名字的限制,因此,除具有管道所具有的功能外,它還允許無親緣關系進程間的通信;
2.信號(Signal):信號是比較復雜的通信方式,用於通知接受進程有某種事件生,除了用於進程間通信外,進程還可以發送信號給進程本身;linux除了支持Unix早期 信號語義函數sigal外,還支持語義符合Posix.1標準的信號函數sigaction(實際上, 該函數是基於BSD的,BSD為了實現可靠信號機制,又能夠統一對外介面,sigaction函數重新實現了signal函數);
3.報文(Message)隊列(消息隊列):消息隊列是消息的鏈接表,包括Posix消息隊列system V消息隊列。有足夠許可權的進程可以向隊列中添加消息,被賦予讀許可權的進程則可以讀走隊列中的消息。消息隊列克服了信號承載信息量少,管道只能承載無格式位元組流以及緩沖區大小受限等缺點。
4.共享內存:使得多個進程可以訪問同一塊內存空間,是最快的可用IPC形式。是針其他通信機制運行效率較低設計的。往往與其它通信機制,如信號量結合使用, 來達到進程間的同步及互斥。
5.信號量(semaphore):主要作為進程間以及同一進程不同線程之間的同步手段。
6.套接字(Socket):更為一般的進程間通信機制,可用於不同機器之間的進程間通信。起初是由Unix系統的BSD分支開發出來的,但現在一般可以移植到其它類Unix 系統上:Linux和System V的變種都支持套接字。

『柒』 linux進程間同步有沒有好的方法

linux進程同步有很多標准方法:信號量、共享內存、消息隊列、有名管道,可以看看《unix網路編程:進程間通信》

『捌』 linux下一個程序建立多個進程,如何保證多個子進程同步。

你可以看看linux操作系統原理相關書籍,裡面有介紹進程管理的,有關於同步於互斥的處理方法。如:臨界資源,臨界區,p v 原語等

『玖』 Linux進程同步

(1)管道(pipe)和有名管道(FIFO)
(2)信號(signal)
(3)消息隊列
(4)共享內存
(5)信號量
(6)套接字(socket)

『拾』 在LInux下怎麼樣進行父子進程同步

/*
* 使用信號實現父子進程之間的同步
*
* TELL_WAIT(): set things up for TELL_xxx & WAIT_xxx
* TELL_PARENT(): tell parent we are done
* WAIT_PARENT(): wait for parent
* TELL_CHILD(): tell child we are done
* WAIT_CHILD(): wait for child
*
* SIGUSR1: the signal parent sends to child
* SIGUSR2: the signal child sends to parent
*/

#include <sys/types.h>
#include <signal.h>
#include <unistd.h>
#include <stdio.h>

static volatile sig_atomic_t sigflag;
static sigset_t newmask, oldmask, zeromask;
/* signal handler for SIGUSR1 and SIGUSR2 */
static void sig_usr(int signo)
{
sigflag = 1;
return;
}
void TELL_WAIT()
{
if(signal(SIGUSR1, sig_usr) == SIG_ERR)
printf("signal SIGUSR1 error\n");
if(signal(SIGUSR2, sig_usr) == SIG_ERR)
printf("signal SIGUSR2 error\n");

sigemptyset(&zeromask);

sigemptyset(&newmask);
sigaddset(&newmask, SIGUSR1);
sigaddset(&newmask, SIGUSR2);

/* block SIGUSR1 and SIGUSR2, and save current signal mask */
if(sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)
printf("SIG_BLOCK error\n");
}
void TELL_PARENT(pid_t pid)
{
kill(pid, SIGUSR2); /* tell parent we are done */
}
void WAIT_PARENT()
{
while(sigflag == 0)
sigsuspend(&zeromask); /* wait for parent */

sigflag = 0;

/* reset signal mask */
if(sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
printf("SIG_SETMASK error\n");
}
void TELL_CHILD(pid_t pid)
{
kill(pid, SIGUSR1);
}
void WAIT_CHILD()
{
while(sigflag == 0)
sigsuspend(&zeromask); /* wait for parent */

sigflag = 0;

/* reset signal mask */
if(sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
printf("SIG_SETMASK error\n");
}
void do_task(char *task_str)
{
printf("%s\n", task_str);
}
/* parent goes first program */
int main()
{
pid_t pid;

TELL_WAIT();

pid = fork();
if(pid < 0) {
printf("fork error\n");
}
else if(pid == 0) {
WAIT_PARENT();
do_task("child task\n");
}
else {
do_task("parent task\n");
TELL_CHILD(pid);
}

return 0;
}
/* child goes first program*/
int main()
{
pid_t pid;

TELL_WAIT();

pid = fork();
if(pid < 0) {
printf("fork error\n");
}
else if(pid == 0) {
do_task("child task\n");
TELL_PARENT(getppid());
}
else {
WAIT_CHILD();
do_task("parent task\n");
}

return 0;
}

/*
* 使用管道實現父子進程同步
*
* 父進程在調用TELL_CHILD 時經由上一個管道寫一個字元p,子進程在
* 調用TELL_PARENT時,經由下一個管道寫一個字元c。相應的WAIT_XXX
* 函數調用read讀一個字元,沒有讀到字元時阻塞(睡眠等待)。
*
*/

static int pfd1[2], pfd[2];

void TELL_WAIT()
{
if(pipe(pfd1) < 0 || pipe(pfd2) < 0)
printf("pipe error\n");
}

void TELL_PARENT(pid_t pid)
{
if(write(pfd2[1], "c", 1) != 1)
printf("write error\n");
}

void WAIT_PARENT()
{
char c;
if(read(pfd1[0], &c, 1) != 1)
printf("read error\n");
if(c != 'p')
printf("WAIT_PARENT: incorrect data\n");
}

void TELL_CHILD(pid_t pid)
{
if(write(pfd1[1], "p", 1) != 1)
printf("write error\n");
}

void WAIT_CHILD()
{
char c;
if(read(pfd1[0], &c, 1) != 1)
printf("read error\n");
if(c != 'c')
printf("WAIT_CHILD: incorrect data\n");
}

熱點內容
數碼相機編程 發布:2024-09-24 05:21:04 瀏覽:938
js文件解壓 發布:2024-09-24 05:20:51 瀏覽:837
老版編程貓 發布:2024-09-24 05:11:57 瀏覽:869
沙堆解壓 發布:2024-09-24 05:11:22 瀏覽:245
mysql的資料庫備份 發布:2024-09-24 04:51:16 瀏覽:447
夜什麼編程 發布:2024-09-24 04:42:35 瀏覽:629
樂高編程名 發布:2024-09-24 04:41:55 瀏覽:867
華為伺服器配置ibmc地址 發布:2024-09-24 04:25:36 瀏覽:29
android實現視頻通話 發布:2024-09-24 04:24:35 瀏覽:268
如何用anaconda配置環境 發布:2024-09-24 04:17:56 瀏覽:653