ocr資料庫
❶ ocr自動識別是什麼意思
證件的OCR識別」就是針對證件類文檔進行識別的技術,原理就是利用OCR識別技術,通過拍攝證件圖像或者從相冊中載入圖像,過濾證件的背景底紋干擾,自動分析證件各文字進行字元切分、識別,最後將識別結果按各欄目分別導入到軟體的資料庫對應的欄位當中。推薦安裝雲脈證件識別,人們就不用再依靠手工輸入相關證件信息,可以實現自動識別採集。
雲脈OCR證件識別一般包括身份證識別、駕照識別、行駛證識別、車牌識別、駕照副頁識別、行駛證副頁識別、護照識別、企業三證識別、戶口本識別、港澳通行證識別,雲脈SaaS平台都能下載上述識別api介面
❷ 怎麼看ocr軟體
cognition,光學字元識別),是屬於圖型識別(Pattern Recognition,PR)的一門學問。其目的就是要讓計算機知道它到底看到了什麼,尤其是文字資料。
由於OCR是一門與識別率拔河的技術,因此如何除錯或利用輔助信息提高識別正確率,是OCR最重要的課題,ICR(Intelligent Character Recognition)的名詞也因此而產生。而根據文字資料存在的媒體介質不同,及取得這些資料的方式不同,就衍生出各式各樣、各種不同的應用。
在此對OCR作一基本介紹,包括其技術簡介以及其應用介紹。
一、OCR的發展
要談OCR的發展,早在60、70年代,世界各國就開始有OCR的研究,而研究的初期,多以文字的識別方法研究為主,且識別的文字僅為0至9的數字。以同樣擁有方塊文字的日本為例,1960年左右開始研究OCR的基本識別理論,初期以數字為對象,直至1965至1970年之間開始有一些簡單的產品,如印刷文字的郵政編碼識別系統,識別郵件上的郵政編碼,幫助郵局作區域分信的作業;也因此至今郵政編碼一直是各國所倡導的地址書寫方式。
OCR可以說是一種不確定的技術研究,正確率就像是一個無窮趨近函數,知道其趨近值,卻只能靠近而無法達到,永遠在與100%作拉鋸戰。因為其牽扯的因素太多了,書寫者的習慣或文件印刷品質、掃描儀的掃瞄品質、識別的方法、學習及測試的樣本……等等,多少都會影響其正確率,也因此,OCR的產品除了需有一個強有力的識別核心外,產品的操作使用方便性、所提供的除錯功能及方法,亦是決定產品好壞的重要因素。
一個OCR識別系統,其目的很簡單,只是要把影像作一個轉換,使影像內的圖形繼續保存、有表格則表格內資料及影像內的文字,一律變成計算機文字,使能達到影像資料的儲存量減少、識別出的文字可再使用及分析,當然也可節省因鍵盤輸入的人力與時間。其處理流程如下圖:
(在下面的站點上)
從影像到結果輸出,須經過影像輸入、影像前處理、文字特徵抽取、比對識別、最後經人工校正將認錯的文字更正,將結果輸出。
在此逐一介紹:
影象輸入:欲經過OCR處理的標的物須透過光學儀器,如影像掃描儀、傳真機或任何攝影器材,將影像轉入計算機。科技的進步,掃描儀等的輸入裝置已製作的愈來愈精緻,輕薄短小、品質也高,對OCR有相當大的幫助,掃描儀的解析度使影像更清晰、掃除速度更增進OCR處理的效率。
影象前處理:影像前處理是OCR系統中,須解決問題最多的一個模塊,從得到一個不是黑就是白的二值化影像,或灰階、彩色的影像,到獨立出一個個的文字影像的過程,都屬於影像前處理。包含了影像正規化、去除雜訊、影像矯正等的影像處理,及圖文分析、文字行與字分離的文件前處理。在影像處理方面,在學理及技術方面都已達成熟階段,因此在市面上或網站上有不少可用的鏈接庫;在文件前處理方面,則憑各家本領了;影像須先將圖片、表格及文字區域分離出來,甚至可將文章的編排方向、文章的題綱及內容主體區分開,而文字的大小及文字的字體亦可如原始文件一樣的判斷出來。
文字特徵抽取:單以識別率而言,特徵抽取可說是OCR的核心,用什麼特徵、怎麼抽取,直接影響識別的好壞,也所以在OCR研究初期,特徵抽取的研究報告特別的多。而特徵可說是識別的籌碼,簡易的區分可分為兩類:一為統計的特徵,如文字區域內的黑/白點數比,當文字區分成好幾個區域時,這一個個區域黑/白點數比之聯合,就成了空間的一個數值向量,在比對時,基本的數學理論就足以應付了。而另一類特徵為結構的特徵,如文字影像細線化後,取得字的筆劃端點、交叉點之數量及位置,或以筆劃段為特徵,配合特殊的比對方法,進行比對,市面上的線上手寫輸入軟體的識別方法多以此種結構的方法為主。
對比資料庫:當輸入文字算完特徵後,不管是用統計或結構的特徵,都須有一比對資料庫或特徵資料庫來進行比對,資料庫的內容應包含所有欲識別的字集文字,根據與輸入文字一樣的特徵抽取方法所得的特徵群組。
對比識別:這是可充分發揮數學運算理論的一個模塊,根據不同的特徵特性,選用不同的數學距離函數,較有名的比對方法有,歐式空間的比對方法、鬆弛比對法(Relaxation)、動態程序比對法(Dynamic Programming,DP),以及類神經網路的資料庫建立及比對、HMM(Hidden Markov Model)…等著名的方法,為了使識別的結果更穩定,也有所謂的專家系統(Experts System)被提出,利用各種特徵比對方法的相異互補性,使識別出的結果,其信心度特別的高。
字詞後處理:由於OCR的識別率並無法達到百分之百,或想加強比對的正確性及信心值,一些除錯或甚至幫忙更正的功能,也成為OCR系統中必要的一個模塊。字詞後處理就是一例,利用比對後的識別文字與其可能的相似候選字群中,根據前後的識別文字找出最合乎邏輯的詞,做更正的功能。
字詞資料庫:為字詞後處理所建立的詞庫。
人工校正:OCR最後的關卡,在此之前,使用者可能只是拿支滑鼠,跟著軟體設計的節奏操作或僅是觀看,而在此有可能須特別花使用者的精神及時間,去更正甚至找尋可能是OCR出錯的地方。一個好的OCR軟體,除了有一個穩定的影像處理及識別核心,以降低錯誤率外,人工校正的操作流程及其功能,亦影響OCR的處理效率,因此,文字影像與識別文字的對照,及其屏幕信息擺放的位置、還有每一識別文字的候選字功能、拒認字的功能、及字詞後處理後特意標示出可能有問題的字詞,都是為使用者設計盡量少使用鍵盤的一種功能,當然,不是說系統沒顯示出的文字就一定正確,就像完全由鍵盤輸入的工作人員也會有出錯的時候,這時要重新校正一次或能允許些許的錯,就完全看使用單位的需求了。
結果輸出:其實輸出是件簡單的事,但卻須看使用者用OCR到底為了什麼?有人只要文本文件作部份文字的再使用之用,所以只要一般的文字文件、有人要漂漂亮亮的和輸入文件一模一樣,所以有原文重現的功能、有人注重表格內的文字,所以要和Excel等軟體結合。無論怎麼變化,都只是輸出檔案格式的變化而已。
❸ 如何在linux中安裝Ocrale資料庫
網上有很多教程,網路裡面有安裝文檔。找對版本就行
❹ 請問什麼是OCR
Optical Character Recognition,簡稱就是OCR了,中文意思呢,就是光學字元識別或者叫做文字識別。它呢,是文字自動輸入的一種方法。
它通過掃描和攝像等光學輸入的方式獲取你所准備的紙張上的文字圖像信息,然後利用各種的模式識別方法分析紙上的文字的形態特徵,判斷出漢字的標准編碼,並按通用格式存儲在文本文件中。
嘿嘿`````對這個咱還是有點研究的 哈哈
❺ OCR什麼意思
OCR(Optical Character Recognition,光學字元識別),是屬於圖型識別(Pattern Recognition,PR)的一門學問。其目的就是要讓計算機知道它到底看到了什麼,尤其是文字資料。
由於OCR是一門與識別率拔河的技術,因此如何除錯或利用輔助信息提高識別正確率,是OCR最重要的課題,ICR(Intelligent Character Recognition)的名詞也因此而產生。而根據文字資料存在的媒體介質不同,及取得這些資料的方式不同,就衍生出各式各樣、各種不同的應用。
在此對OCR作一基本介紹,包括其技術簡介以及其應用介紹。
一、OCR的發展
要談OCR的發展,早在60、70年代,世界各國就開始有OCR的研究,而研究的初期,多以文字的識別方法研究為主,且識別的文字僅為0至9的數字。以同樣擁有方塊文字的日本為例,1960年左右開始研究OCR的基本識別理論,初期以數字為對象,直至1965至1970年之間開始有一些簡單的產品,如印刷文字的郵政編碼識別系統,識別郵件上的郵政編碼,幫助郵局作區域分信的作業;也因此至今郵政編碼一直是各國所倡導的地址書寫方式。
OCR可以說是一種不確定的技術研究,正確率就像是一個無窮趨近函數,知道其趨近值,卻只能靠近而無法達到,永遠在與100%作拉鋸戰。因為其牽扯的因素太多了,書寫者的習慣或文件印刷品質、掃描儀的掃瞄品質、識別的方法、學習及測試的樣本……等等,多少都會影響其正確率,也因此,OCR的產品除了需有一個強有力的識別核心外,產品的操作使用方便性、所提供的除錯功能及方法,亦是決定產品好壞的重要因素。
一個OCR識別系統,其目的很簡單,只是要把影像作一個轉換,使影像內的圖形繼續保存、有表格則表格內資料及影像內的文字,一律變成計算機文字,使能達到影像資料的儲存量減少、識別出的文字可再使用及分析,當然也可節省因鍵盤輸入的人力與時間。
從影像到結果輸出,須經過影像輸入、影像前處理、文字特徵抽取、比對識別、最後經人工校正將認錯的文字更正,將結果輸出。
在此逐一介紹:
影象輸入:欲經過OCR處理的標的物須透過光學儀器,如影像掃描儀、傳真機或任何攝影器材,將影像轉入計算機。科技的進步,掃描儀等的輸入裝置已製作的愈來愈精緻,輕薄短小、品質也高,對OCR有相當大的幫助,掃描儀的解析度使影像更清晰、掃除速度更增進OCR處理的效率。
影象前處理:影像前處理是OCR系統中,須解決問題最多的一個模塊,從得到一個不是黑就是白的二值化影像,或灰階、彩色的影像,到獨立出一個個的文字影像的過程,都屬於影像前處理。包含了影像正規化、去除雜訊、影像矯正等的影像處理,及圖文分析、文字行與字分離的文件前處理。在影像處理方面,在學理及技術方面都已達成熟階段,因此在市面上或網站上有不少可用的鏈接庫;在文件前處理方面,則憑各家本領了;影像須先將圖片、表格及文字區域分離出來,甚至可將文章的編排方向、文章的題綱及內容主體區分開,而文字的大小及文字的字體亦可如原始文件一樣的判斷出來。
文字特徵抽取:單以識別率而言,特徵抽取可說是OCR的核心,用什麼特徵、怎麼抽取,直接影響識別的好壞,也所以在OCR研究初期,特徵抽取的研究報告特別的多。而特徵可說是識別的籌碼,簡易的區分可分為兩類:一為統計的特徵,如文字區域內的黑/白點數比,當文字區分成好幾個區域時,這一個個區域黑/白點數比之聯合,就成了空間的一個數值向量,在比對時,基本的數學理論就足以應付了。而另一類特徵為結構的特徵,如文字影像細線化後,取得字的筆劃端點、交叉點之數量及位置,或以筆劃段為特徵,配合特殊的比對方法,進行比對,市面上的線上手寫輸入軟體的識別方法多以此種結構的方法為主。
對比資料庫:當輸入文字算完特徵後,不管是用統計或結構的特徵,都須有一比對資料庫或特徵資料庫來進行比對,資料庫的內容應包含所有欲識別的字集文字,根據與輸入文字一樣的特徵抽取方法所得的特徵群組。
對比識別:這是可充分發揮數學運算理論的一個模塊,根據不同的特徵特性,選用不同的數學距離函數,較有名的比對方法有,歐式空間的比對方法、鬆弛比對法(Relaxation)、動態程序比對法(Dynamic Programming,DP),以及類神經網路的資料庫建立及比對、HMM(Hidden Markov Model)…等著名的方法,為了使識別的結果更穩定,也有所謂的專家系統(Experts System)被提出,利用各種特徵比對方法的相異互補性,使識別出的結果,其信心度特別的高。
字詞後處理:由於OCR的識別率並無法達到百分之百,或想加強比對的正確性及信心值,一些除錯或甚至幫忙更正的功能,也成為OCR系統中必要的一個模塊。字詞後處理就是一例,利用比對後的識別文字與其可能的相似候選字群中,根據前後的識別文字找出最合乎邏輯的詞,做更正的功能。
字詞資料庫:為字詞後處理所建立的詞庫。
人工校正:OCR最後的關卡,在此之前,使用者可能只是拿支滑鼠,跟著軟體設計的節奏操作或僅是觀看,而在此有可能須特別花使用者的精神及時間,去更正甚至找尋可能是OCR出錯的地方。一個好的OCR軟體,除了有一個穩定的影像處理及識別核心,以降低錯誤率外,人工校正的操作流程及其功能,亦影響OCR的處理效率,因此,文字影像與識別文字的對照,及其屏幕信息擺放的位置、還有每一識別文字的候選字功能、拒認字的功能、及字詞後處理後特意標示出可能有問題的字詞,都是為使用者設計盡量少使用鍵盤的一種功能,當然,不是說系統沒顯示出的文字就一定正確,就像完全由鍵盤輸入的工作人員也會有出錯的時候,這時要重新校正一次或能允許些許的錯,就完全看使用單位的需求了。
結果輸出:其實輸出是件簡單的事,但卻須看使用者用OCR到底為了什麼?有人只要文本文件作部份文字的再使用之用,所以只要一般的文字文件、有人要漂漂亮亮的和輸入文件一模一樣,所以有原文重現的功能、有人注重表格內的文字,所以要和Excel等軟體結合。無論怎麼變化,都只是輸出檔案格式的變化而已。
❻ OCR是什麼
OCR就是文字識別系統(一個軟體),把圖片上的文字識別成純文本。
Setup.exe就是安裝程序。
你可以問問誰用你的電腦進行過識別工作,那那個軟體應該是他放上的。
補充:可以把掃描進電腦的文件識別成純文字,也就是可以復制和粘貼的那種。簡單地說,識別文字。一般都可以識別漢字和英文字母、數字什麼的。
可以刪。
❼ 介紹一下OCR技術
OCR技術是光學字元識別的縮寫(Optical Character Recognition),是通過掃描等光學輸入方式將各種票據、報刊、書籍、文稿及其它印刷品的文字轉化為圖像信息,再利用文字識別技術將圖像信息轉化為可以使用的計算機輸入技術。可應用於銀行票據、大量文字資料、檔案卷宗、文案的錄入和處理領域。適合於銀行、稅務等行業大量票據表格的自動掃描識別及長期存儲。相對一般文本,通常以最終識別率、識別速度、版面理解正確率及版面還原滿意度4個方面作為OCR技術的評測依據;而相對於表格及票據, 通常以識別率或整張通過率及識別速度為測定OCR技術的實用標准。
OCR識別技術不僅具有可以自動判斷、拆分、 識別和還原各種通用型印刷體表格,在表格理解上做出了令人滿意的實用結果,能夠自動分析文稿的版面布局,自動分欄、並判斷出標題、橫欄、圖像、表格等相應屬性,並判定識別順序,能將識別結果還原成與掃描文稿的版面布局一致的新文本。表格自動錄入技術,可自動識別特定表格的印刷或列印漢字、字母、數字,可識別手寫體漢字、手寫體字母、數字及多種手寫符號,並按表格格式輸出。提高了表格錄入效率,可節省大量人力。同時支持將表格識別直接還原成PTF、PDF、HTML等格式文檔;並可以對圖像嵌入橫排文本和豎排文本、表格文本進行自動排版面分析。
採用OCR識別技術,可以將其應用於銀行票據光碟縮微系統,可以自動提取票據要素,可減輕操作員的工作量,減少重復勞動,尤其是在與銀行事後且監督系統相結合後,可以替代原先的操作人員完成事後監督工作。由計算機自動識別票據上的日期、帳號、金額等要素,通過銀行事後監督系統與業務系統中的數據進行比較,完成傳統的事後監督操作;配有印章驗證系統後,自動將憑證圖像中的印章與系統中預留的印鑒進行比較,完成印章的真偽識別。
利用目前的高新技術-OCR,直接從憑證影像中提取金額、帳號等重要數據,代替人的手工錄入,與條碼識別/流水識別緊密結合,實現建立事後副本帳、完成事後監督的工作。OCR處理一般使用性能較好的PC機,OCR處理程序一經啟動會自動掃描資料庫中的憑證影像,發現有需OCR處理而未處理的,提取到本地進行處理。
OCR手寫體、印刷體識別技術,能識別不同人寫的千差萬別的手寫體漢字和數字,應用於本系統,識別憑證影像中儲戶填寫的信息,如大寫金額、小寫金額、帳號、存期、日期、證件號等,可以代替手工錄入。同時被識別得出的金額還要與流水識別所得的金額進行核對,核對成功,則OCR識別成功。這樣處理是為了避免誤判。
經過對銀行產生的實際憑證進行的大量測試,在實際開發過程中,根據銀行的實際需求,OCR技術在票據和表格識別能力和手寫體自動識別能力上不斷提升,目前處理速度可達到每分鍾60~80張票據,存摺識別率已經達到了85%以上,存單、憑條識別率達到90%以上,而85%以上的識別率就能減少80%以上的數據錄入員。
❽ OCR的英文全稱
OCR(Optical Character Recognition,光學字元識別),是屬於圖型識別(Pattern Recognition,PR)的一門學問。其目的就是要讓計算機知道它到底看到了什麼,尤其是文字資料。
由於OCR是一門與識別率拔河的技術,因此如何除錯或利用輔助信息提高識別正確率,是OCR最重要的課題,ICR(Intelligent Character Recognition)的名詞也因此而產生。而根據文字資料存在的媒體介質不同,及取得這些資料的方式不同,就衍生出各式各樣、各種不同的應用。
在此對OCR作一基本介紹,包括其技術簡介以及其應用介紹。
一、OCR的發展
要談OCR的發展,早在60、70年代,世界各國就開始有OCR的研究,而研究的初期,多以文字的識別方法研究為主,且識別的文字僅為0至9的數字。以同樣擁有方塊文字的日本為例,1960年左右開始研究OCR的基本識別理論,初期以數字為對象,直至1965至1970年之間開始有一些簡單的產品,如印刷文字的郵政編碼識別系統,識別郵件上的郵政編碼,幫助郵局作區域分信的作業;也因此至今郵政編碼一直是各國所倡導的地址書寫方式。
OCR可以說是一種不確定的技術研究,正確率就像是一個無窮趨近函數,知道其趨近值,卻只能靠近而無法達到,永遠在與100%作拉鋸戰。因為其牽扯的因素太多了,書寫者的習慣或文件印刷品質、掃描儀的掃瞄品質、識別的方法、學習及測試的樣本……等等,多少都會影響其正確率,也因此,OCR的產品除了需有一個強有力的識別核心外,產品的操作使用方便性、所提供的除錯功能及方法,亦是決定產品好壞的重要因素。
一個OCR識別系統,其目的很簡單,只是要把影像作一個轉換,使影像內的圖形繼續保存、有表格則表格內資料及影像內的文字,一律變成計算機文字,使能達到影像資料的儲存量減少、識別出的文字可再使用及分析,當然也可節省因鍵盤輸入的人力與時間。其處理流程如下圖:
(在下面的站點上)
從影像到結果輸出,須經過影像輸入、影像前處理、文字特徵抽取、比對識別、最後經人工校正將認錯的文字更正,將結果輸出。
在此逐一介紹:
影象輸入:欲經過OCR處理的標的物須透過光學儀器,如影像掃描儀、傳真機或任何攝影器材,將影像轉入計算機。科技的進步,掃描儀等的輸入裝置已製作的愈來愈精緻,輕薄短小、品質也高,對OCR有相當大的幫助,掃描儀的解析度使影像更清晰、掃除速度更增進OCR處理的效率。
影象前處理:影像前處理是OCR系統中,須解決問題最多的一個模塊,從得到一個不是黑就是白的二值化影像,或灰階、彩色的影像,到獨立出一個個的文字影像的過程,都屬於影像前處理。包含了影像正規化、去除雜訊、影像矯正等的影像處理,及圖文分析、文字行與字分離的文件前處理。在影像處理方面,在學理及技術方面都已達成熟階段,因此在市面上或網站上有不少可用的鏈接庫;在文件前處理方面,則憑各家本領了;影像須先將圖片、表格及文字區域分離出來,甚至可將文章的編排方向、文章的題綱及內容主體區分開,而文字的大小及文字的字體亦可如原始文件一樣的判斷出來。
文字特徵抽取:單以識別率而言,特徵抽取可說是OCR的核心,用什麼特徵、怎麼抽取,直接影響識別的好壞,也所以在OCR研究初期,特徵抽取的研究報告特別的多。而特徵可說是識別的籌碼,簡易的區分可分為兩類:一為統計的特徵,如文字區域內的黑/白點數比,當文字區分成好幾個區域時,這一個個區域黑/白點數比之聯合,就成了空間的一個數值向量,在比對時,基本的數學理論就足以應付了。而另一類特徵為結構的特徵,如文字影像細線化後,取得字的筆劃端點、交叉點之數量及位置,或以筆劃段為特徵,配合特殊的比對方法,進行比對,市面上的線上手寫輸入軟體的識別方法多以此種結構的方法為主。
對比資料庫:當輸入文字算完特徵後,不管是用統計或結構的特徵,都須有一比對資料庫或特徵資料庫來進行比對,資料庫的內容應包含所有欲識別的字集文字,根據與輸入文字一樣的特徵抽取方法所得的特徵群組。
對比識別:這是可充分發揮數學運算理論的一個模塊,根據不同的特徵特性,選用不同的數學距離函數,較有名的比對方法有,歐式空間的比對方法、鬆弛比對法(Relaxation)、動態程序比對法(Dynamic Programming,DP),以及類神經網路的資料庫建立及比對、HMM(Hidden Markov Model)…等著名的方法,為了使識別的結果更穩定,也有所謂的專家系統(Experts System)被提出,利用各種特徵比對方法的相異互補性,使識別出的結果,其信心度特別的高。
字詞後處理:由於OCR的識別率並無法達到百分之百,或想加強比對的正確性及信心值,一些除錯或甚至幫忙更正的功能,也成為OCR系統中必要的一個模塊。字詞後處理就是一例,利用比對後的識別文字與其可能的相似候選字群中,根據前後的識別文字找出最合乎邏輯的詞,做更正的功能。
字詞資料庫:為字詞後處理所建立的詞庫。
人工校正:OCR最後的關卡,在此之前,使用者可能只是拿支滑鼠,跟著軟體設計的節奏操作或僅是觀看,而在此有可能須特別花使用者的精神及時間,去更正甚至找尋可能是OCR出錯的地方。一個好的OCR軟體,除了有一個穩定的影像處理及識別核心,以降低錯誤率外,人工校正的操作流程及其功能,亦影響OCR的處理效率,因此,文字影像與識別文字的對照,及其屏幕信息擺放的位置、還有每一識別文字的候選字功能、拒認字的功能、及字詞後處理後特意標示出可能有問題的字詞,都是為使用者設計盡量少使用鍵盤的一種功能,當然,不是說系統沒顯示出的文字就一定正確,就像完全由鍵盤輸入的工作人員也會有出錯的時候,這時要重新校正一次或能允許些許的錯,就完全看使用單位的需求了。
結果輸出:其實輸出是件簡單的事,但卻須看使用者用OCR到底為了什麼?有人只要文本文件作部份文字的再使用之用,所以只要一般的文字文件、有人要漂漂亮亮的和輸入文件一模一樣,所以有原文重現的功能、有人注重表格內的文字,所以要和Excel等軟體結合。無論怎麼變化,都只是輸出檔案格式的變化而已。
❾ 未向ocral資料庫中不可為空的欄位填入數據,資料庫如何處理,若是一堆亂符可以唯一標示記錄嗎
估計這里能回答OCRAL資料庫的人很少,SQL我還能幫忙。你去PHP100 論壇看看 裡面大神超多。
❿ ocrale資料庫安裝求教
只能把ocr和votedisk創建在共享的裸設備下,而裸設備在linux平台是需要手動配置的,相應的配置方法網路上很多,solaris平台的裸設備不需要配置,而11g下放置在asm disk下,同樣也需要配置asm disk,直接以/dev/sd*形式oracle是無法識別的!