當前位置:首頁 » 操作系統 » 蟻群演算法時間

蟻群演算法時間

發布時間: 2025-03-26 02:57:15

A. 蟻群演算法中轉移概率是怎麼用的.不同的螞蟻為什麼會選擇不同的路徑

因為不同路徑的信息素和啟發信息不同,所以向每條路徑轉移的概率也不同;
具體實現可以運用輪盤賭選擇,轉移概率越大的路徑就會有更多的螞蟻選擇.。
Prime 演算法和 Kruskal 演算法都是用來求加權連通簡單圖中權和最小的支撐樹(即最小樹)的,Prime演算法的時間復雜度為O(n^2) (n 為頂點數),Kruskal 演算法的時間復雜度為 O(eln(e)) (e為邊數),這兩種演算法都是多項式時間演算法,也就是說,最小樹問題已經有了有效演算法去求解,屬於P問題。
Dijkstra 演算法求解的是加權連通簡單圖中一個頂點到其它每個頂點的具有最小權和的有向路,最簡單版本的時間復雜度是O(n^2),也是多項式時間演算法。
而蟻群演算法是一種近似演算法,它不是用來解決已存在精確有效演算法的問題的,而是用來解決至今沒有找到精確的有效演算法的問題的,比如旅行商問題(TSP)。
旅行商問題也可以說是求「最短路徑」,但它是求一個完全圖的最小哈密頓圈,這個問題至今未找到多項式時間演算法,屬於NPC問題,也就是說,當問題規模稍大一點,現有的精確演算法的運算量就會急劇增加。
文中的某些觀點引自知乎大神余幸恩,感謝幫忙!~

B. 如何用蟻群演算法來計算固定時間內走更多的城市且路程最短

概念:蟻群演算法(ant colony optimization,ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法.它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為.蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值
其原理:為什麼小小的螞蟻能夠找到食物?他們具有智能么?設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼的編程,因為程序的錯誤也許會讓你前功盡棄.這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序
應用范圍:螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內
引申:跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點:1、多樣性 2、正反饋 多樣性保證了螞蟻在覓食的時候不置走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來.我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力.正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了.引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合.如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水.這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整.既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化.而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合.而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了!蟻群演算法的實現 下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩.其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了.

C. 蟻群演算法的概念,最好能舉例說明一些蟻群演算法適用於哪些問題!

概念:蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值

其原理:為什麼小小的螞蟻能夠找到食物?他們具有智能么?設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼的編程,因為程序的錯誤也許會讓你前功盡棄。這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序

應用范圍:螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內

引申:跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點: 1、多樣性 2、正反饋 多樣性保證了螞蟻在覓食的時候不置走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來。我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力。正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了。 引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合。如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水。這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整。 既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化。而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合。而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了! 蟻群演算法的實現 下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩。 其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了。

具體參考http://ke..com/view/539346.htm
希望對你有幫助,謝謝。

D. 蟻群演算法及其應用實例

       蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種對自然界螞蟻的尋徑方式進行模擬而得到的一種仿生演算法,是一種用來在圖中尋找優化路徑的機率型演算法。
       螞蟻在運動過程中,可以在行走的路徑上留下信息素,後來的螞蟻可以感知到信息素的存在,信息素濃度越高的路徑越容易被後來的螞蟻選擇,從而形成一種正反饋現象。
       它能夠求出從原點出發,經過若干個給定的需求點,最終返回原點的最短路徑。這也就是著名的旅行商問題(Traveling Saleman Problem,TSP)。

       若螞蟻從A點出發到D點覓食,它可以隨機從ABD或ACD中選擇一條路。假設初始時為每條路分配一隻螞蟻,每個時間單位行走一步,則經過8個時間單位後,情形如下圖所示:ABD路線的螞蟻到達D點,ACD路線的螞蟻到達C點。

       那麼,再過8個時間單位,很容易可以得到下列情形:ABD路線的螞蟻回到A點,ACD路線的螞蟻到達D點。

α 代表信息素量對是否選擇當前路徑的影響程度,反映了蟻群在路徑搜索中隨機性因素作用的強度。
α 越大,螞蟻選擇以前走過的路徑的可能性越大,搜索的隨機性就會減弱。
α 過小,會導致蟻群搜索過早陷入局部最優,取值范圍通常為[1,4]。

β 反映了啟發式信息在指導蟻群搜索中的相對重要程度,蟻群尋優過程中先驗性、確定性因素作用的強度。
β 過大,雖然收斂速度加快,但是易陷入局部最優。
β 過小,蟻群易陷入純粹的隨機搜索,很難找到最優解。通常取[0,5]。

ρ 反映了信息素的蒸發程度,相反,1-ρ 表示信息素的保留水平
ρ 過大,信息素會發過快,容易導致最優路徑被排除。
ρ 過小,各路徑上信息素含量差別過小,以前搜索過的路徑被在此選擇的可能性過大,會影響演算法的隨機性和全局搜索能力。通常取[0.2,0.5]。

m過大,每條路徑上信息素趨於平均,正反饋作用減弱,從而導致收斂速度減慢。
m過小,可能導致一些從未搜索過的路徑信息素濃度減小為0,導致過早收斂,解的全局最優性降低

總信息量Q對演算法性能的影響有賴於αβρ的選取,以及演算法模型的選擇。
Q對ant-cycle模型蟻群演算法的性能沒有明顯影響,不必特別考慮,可任意選取。

E. 蟻群演算法應用實例有哪些

蟻群演算法的應用實例主要包括以下幾個方面:

  1. 旅行商問題

    • 簡介:蟻群演算法最早且最著名的應用之一,用於解決給定一組城市以及城市間距離,求訪問每個城市僅一次並返回出發城市的最短路徑問題。
    • 應用:物流配送、路徑規劃等領域。
  2. 車輛路由問題

    • 簡介:在旅行商問題基礎上,考慮多個車輛從同一或多個倉庫出發,向多個客戶提供服務並返回倉庫的路徑規劃問題。
    • 應用:物流配送優化、公共交通規劃等。
  3. 指派問題

    • 簡介:將一組任務分配給一組人員,使得總成本最小化的組合優化問題。
    • 應用:員工排班、任務分配等場景。
  4. Jobshop調度問題

    • 簡介:在多個作業需要在有限數量的機器上加工,且每個作業需要按照特定順序在不同機器上完成的調度問題。
    • 應用:製造業生產調度、車間作業計劃等。
  5. 圖著色問題

    • 簡介:給定一個圖,用盡可能少的顏色給圖的頂點著色,使得相鄰頂點顏色不同的組合優化問題。
    • 應用:時間表安排、無線頻譜分配等。
  6. 網路路由問題

    • 簡介:利用蟻群演算法的信息分布式、動態、隨機和非同步等特點,解決網路中的數據包傳輸路徑選擇問題。
    • 應用:互聯網路由優化、通信網路設計等。

綜上所述,蟻群演算法因其獨特的機制和優勢,在多個組合優化問題中得到了廣泛應用,並在不同領域展現出了良好的性能和效果。

F. 哪本python書立有蟻群演算法

簡介

蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質。針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。
定義

各個螞蟻在沒有事先告訴他們食物在什麼地方的前提下開始尋找食物。當一隻找到食物以後,它會向環境釋放一種揮發性分泌物pheromone (稱為信息素,該物質隨著時間的推移會逐漸揮發消失,信息素濃度的大小表徵路徑的遠近)來實現的,吸引其他的螞蟻過來,這樣越來越多的螞蟻會找到食物。有些螞蟻並沒有像其它螞蟻一樣總重復同樣的路,他們會另闢蹊徑,如果另開辟的道路比原來的其他道路更短,那麼,漸漸地,更多的螞蟻被吸引到這條較短的路上來。最後,經過一段時間運行,可能會出現一條最短的路徑被大多數螞蟻重復著。

解決的問題

三維地形中,給出起點和重點,找到其最優路徑。

程序代碼:

numpy as npimport matplotlib.pyplot as plt%pylabcoordinates = np.array([[565.0,575.0],[25.0,185.0],[345.0,750.0],[945.0,685.0],[845.0,655.0],[880.0,660.0],[25.0,230.0],[525.0,1000.0],[580.0,1175.0],[650.0,1130.0],[1605.0,620.0],[1220.0,580.0],[1465.0,200.0],[1530.0, 5.0],[845.0,680.0],[725.0,370.0],[145.0,665.0],[415.0,635.0],[510.0,875.0],[560.0,365.0],[300.0,465.0],[520.0,585.0],[480.0,415.0],[835.0,625.0],[975.0,580.0],[1215.0,245.0],[1320.0,315.0],[1250.0,400.0],[660.0,180.0],[410.0,250.0],[420.0,555.0],[575.0,665.0],[1150.0,1160.0],[700.0,580.0],[685.0,595.0],[685.0,610.0],[770.0,610.0],[795.0,645.0],[720.0,635.0],[760.0,650.0],[475.0,960.0],[95.0,260.0],[875.0,920.0],[700.0,500.0],[555.0,815.0],[830.0,485.0],[1170.0, 65.0],[830.0,610.0],[605.0,625.0],[595.0,360.0],[1340.0,725.0],[1740.0,245.0]])def getdistmat(coordinates):num = coordinates.shape[0]distmat = np.zeros((52,52))for i in range(num):for j in range(i,num):distmat[i][j] = distmat[j][i]=np.linalg.norm(coordinates[i]-coordinates[j])return distmatdistmat = getdistmat(coordinates)numant = 40 #螞蟻個數numcity = coordinates.shape[0] #城市個數alpha = 1 #信息素重要程度因子beta = 5 #啟發函數重要程度因子rho = 0.1 #信息素的揮發速度Q = 1iter = 0itermax = 250etatable = 1.0/(distmat+np.diag([1e10]*numcity)) #啟發函數矩陣,表示螞蟻從城市i轉移到矩陣j的期望程度pheromonetable = np.ones((numcity,numcity)) # 信息素矩陣pathtable = np.zeros((numant,numcity)).astype(int) #路徑記錄表distmat = getdistmat(coordinates) #城市的距離矩陣lengthaver = np.zeros(itermax) #各代路徑的平均長度lengthbest = np.zeros(itermax) #各代及其之前遇到的最佳路徑長度pathbest = np.zeros((itermax,numcity)) # 各代及其之前遇到的最佳路徑長度while iter < itermax:# 隨機產生各個螞蟻的起點城市if numant <= numcity:#城市數比螞蟻數多pathtable[:,0] = np.random.permutation(range(0,numcity))[:numant]else: #螞蟻數比城市數多,需要補足pathtable[:numcity,0] = np.random.permutation(range(0,numcity))[:]pathtable[numcity:,0] = np.random.permutation(range(0,numcity))[:numant-numcity]length = np.zeros(numant) #計算各個螞蟻的路徑距離for i in range(numant):visiting = pathtable[i,0] # 當前所在的城市#visited = set() #已訪問過的城市,防止重復#visited.add(visiting) #增加元素unvisited = set(range(numcity))#未訪問的城市unvisited.remove(visiting) #刪除元素for j in range(1,numcity):#循環numcity-1次,訪問剩餘的numcity-1個城市#每次用輪盤法選擇下一個要訪問的城市listunvisited = list(unvisited)probtrans = np.zeros(len(listunvisited))for k in range(len(listunvisited)):probtrans[k] = np.power(pheromonetable[visiting][listunvisited[k]],alpha)*np.power(etatable[visiting][listunvisited[k]],alpha)cumsumprobtrans = (probtrans/sum(probtrans)).cumsum()cumsumprobtrans -= np.random.rand()k = listunvisited[find(cumsumprobtrans>0)[0]] #下一個要訪問的城市pathtable[i,j] = kunvisited.remove(k)#visited.add(k)length[i] += distmat[visiting][k]visiting = klength[i] += distmat[visiting][pathtable[i,0]] #螞蟻的路徑距離包括最後一個城市和第一個城市的距離#print length# 包含所有螞蟻的一個迭代結束後,統計本次迭代的若干統計參數lengthaver[iter] = length.mean()if iter == 0:lengthbest[iter] = length.min()pathbest[iter] = pathtable[length.argmin()].()else:if length.min() > lengthbest[iter-1]:lengthbest[iter] = lengthbest[iter-1]pathbest[iter] = pathbest[iter-1].()else:lengthbest[iter] = length.min()pathbest[iter] = pathtable[length.argmin()].()# 更新信息素changepheromonetable = np.zeros((numcity,numcity))for i in range(numant):for j in range(numcity-1):changepheromonetable[pathtable[i,j]][pathtable[i,j+1]] += Q/distmat[pathtable[i,j]][pathtable[i,j+1]]changepheromonetable[pathtable[i,j+1]][pathtable[i,0]] += Q/distmat[pathtable[i,j+1]][pathtable[i,0]]pheromonetable = (1-rho)*pheromonetable + changepheromonetableiter += 1 #迭代次數指示器+1#觀察程序執行進度,該功能是非必須的if (iter-1)%20==0:print iter-1# 做出平均路徑長度和最優路徑長度fig,axes = plt.subplots(nrows=2,ncols=1,figsize=(12,10))axes[0].plot(lengthaver,'k',marker = u'')axes[0].set_title('Average Length')axes[0].set_xlabel(u'iteration')axes[1].plot(lengthbest,'k',marker = u'')axes[1].set_title('Best Length')axes[1].set_xlabel(u'iteration')fig.savefig('Average_Best.png',dpi=500,bbox_inches='tight')plt.close()#作出找到的最優路徑圖bestpath = pathbest[-1]plt.plot(coordinates[:,0],coordinates[:,1],'r.',marker=u'$cdot$')plt.xlim([-100,2000])plt.ylim([-100,1500])for i in range(numcity-1):#m,n = bestpath[i],bestpath[i+1]print m,nplt.plot([coordinates[m][0],coordinates[n][0]],[coordinates[m][1],coordinates[n][1]],'k')plt.plot([coordinates[bestpath[0]][0],coordinates[n][0]],[coordinates[bestpath[0]][1],coordinates[n][1]],'b')ax=plt.gca()ax.set_title("Best Path")ax.set_xlabel('X axis')ax.set_ylabel('Y_axis')plt.savefig('Best Path.png',dpi=500,bbox_inches='tight')plt.close()
熱點內容
phpcurlxml 發布:2025-03-26 15:44:58 瀏覽:727
安卓手機如何清空流量 發布:2025-03-26 15:43:45 瀏覽:349
sqlserver圖標 發布:2025-03-26 15:29:09 瀏覽:457
音頻去噪演算法 發布:2025-03-26 15:17:58 瀏覽:556
透明pp文件夾 發布:2025-03-26 15:15:52 瀏覽:145
perl的編譯器 發布:2025-03-26 15:12:25 瀏覽:360
linuxug 發布:2025-03-26 15:12:21 瀏覽:510
濟寧編程 發布:2025-03-26 15:11:43 瀏覽:798
手機如何緩存電影 發布:2025-03-26 15:10:03 瀏覽:613
phppost類 發布:2025-03-26 15:10:01 瀏覽:204