圓擬合演算法
『壹』 分類問題常用的演算法有哪些
常用的分類器演算法包括決策樹、K近鄰演算法、支持向量機、邏輯回歸和樸素貝葉斯分類器等。
詳細解釋:
1. 決策樹:決策樹是一種基於樹形結構的分類器演算法。它通過對特徵進行一系列的問題判斷,將數據逐步劃分到不同的類別中。決策樹的優點是直觀易懂,可以直接呈現決策邏輯;缺點是容易過擬合,對連續性的數據處理不夠平滑。例如,在判斷一個水果是否是蘋果時,決策樹可能會通過詢問「顏色是否為紅色」、「形狀是否為圓形」等問題來進行分類。
2. K近鄰演算法(KNN):K近鄰演算法是一種基於實例的學習,或者是局部逼近和將所有計算推遲到分類之後進行的分類方法。簡單來說,KNN演算法在分類時,會查找與待分類數據最接近的K個數據,並根據這些數據的類別來判斷待分類數據的類別。比如,在判斷一個未知電影的類型時,KNN可能會查找與它最相似的K部電影,然後依據這些電影的類型來分類。
3. 支持向量機(SVM):支持向量機是一種通過尋找最大化類間邊界的分類器演算法。SVM嘗試在高維空間中尋找一個超平面,使得該超平面可以最大化地將不同類別的數據分隔開。SVM的優點是可以有效處理高維數據,且對於非線性問題也有較好的處理能力;缺點是在處理大規模數據時,計算復雜度較高。例如,在識別手寫數字時,SVM可以通過將手寫數字圖像映射到高維特徵空間,然後尋找可以最大化區分不同數字的超平面。
4. 邏輯回歸:雖然名為「回歸」,但邏輯回歸實際上是一種分類演算法。它通過擬合數據的邏輯函數來預測一個事件發生的概率。邏輯回歸的優點是模型簡單,計算效率高,且輸出結果為概率,具有很好的解釋性;缺點是對於非線性問題,可能需要特徵轉換才能處理。例如,在預測信用卡欺詐時,邏輯回歸可以根據用戶的交易歷史和行為,計算下一筆交易為欺詐行為的概率。
以上都是常用的分類器演算法,它們各有優缺點,適用於不同的場景和問題。在實際應用中,可以根據問題的特性和數據的特點,選擇合適的分類器演算法。
『貳』 關於演算法的文獻翻譯求助
Yi (1998) proposed a fast finding and fitting algorithm using the geometric symmetry of the circle without HT. Yin (1999) proposed a hybrid scheme using GA and a local search to detect circles and ellipses. In this paper, a two-step algorithm for finding circles from pairs of chords intersecting each other is proposed. In the first step, the 2D HT is used to compute the centers of the circles. Its idea is based on that a pair of chords can locate the center of the circle. After the points computed from pairs of chords being voted to the 2D accumulator array, the significant peaks are detected as the candidates of the center.
易氏於1998年提出使用沒有霍夫變換的圓弧幾何對稱的一種快速找尋及擬合演算法。尹氏於1999年提出一種利用遺傳演算法和局部搜索的混合方式來識別圓弧與橢圓。本研究提議使用兩步演算法以相交弦來識別圓弧。第一步是以二維霍夫變換(HT)法將所有圓弧的中心找出;其概念是基於一雙弦可以定位圓弧的中心點。當由多對雙弦所計算出來的點被選至二維累加器數組後,其顯著的高峰將被測為中心的選擇點。
In the second step, the 1D radius histogram is used to verify the circles and to compute their radii. The proposed method explores pairs of the chords and does not require any gradient information which may be sensitive to noise. Furthermore, a certain threshold value for detecting the peaks in the 2D accumulator array can be applied to the circles of dierent sizes because of the normalization of the count by the radius. This paper is organized as follows. In Section 2, it is shown how a pair of the chords intersecting each other locates the center of the circle. Then, the circle detection method is described in details. In Section 3, the analysis of the proposed algorithm is given. In Section 4, the experimental results with synthetic and real images are demonstrated. Concluding remarks follow in Section 5.
第二步是使用半徑直方圖來核實圓弧及計算圓弧的半徑。這種方法不需要利用對噪音敏感的梯度信息就可探索雙弦。另外,由於半徑數的歸一化,檢測二維累加器數組高峰的某些閾值可以應用於不同大小的圓弧。
本文的整理如下:在第二節里將會顯示一雙相交弦是如何定位圓弧的中心點;然後是詳細闡述圓弧識別的方法。在第三節里將會闡述所提議的演算法分析。第四節展示合成圖像與真實圖像的實驗結果。第五節是結束語。
【英語牛人團】
『叄』 DBSCAN原理是怎麼樣的
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚類演算法,它是一種基於高密度連通區域的、基於密度的聚類演算法,能夠將具有足夠高密度的區域劃分為簇,並在具有雜訊的數據中發現任意形狀的簇。我們總結一下DBSCAN聚類演算法原理的基本要點:
DBSCAN演算法需要選擇一種距離度量,對於待聚類的數據集中,任意兩個點之間的距離,反映了點之間的密度,說明了點與點是否能夠聚到同一類中。由於DBSCAN演算法對高維數據定義密度很困難,所以對於二維空間中的點,可以使用歐幾里德距離來進行度量。
DBSCAN演算法需要用戶輸入2個參數:一個參數是半徑(Eps),表示以給定點P為中心的圓形鄰域的范圍;另一個參數是以點P為中心的鄰域內最少點的數量(MinPts)。如果滿足:以點P為中心、半徑為Eps的鄰域內的點的個數不少於MinPts,則稱點P為核心點。
DBSCAN聚類使用到一個k-距離的概念,k-距離是指:給定數據集P={p(i); i=0,1,…n},對於任意點P(i),計算點P(i)到集合D的子集S={p(1), p(2), …, p(i-1), p(i+1), …, p(n)}中所有點之間的距離,距離按照從小到大的順序排序,假設排序後的距離集合為D={d(1), d(2), …, d(k-1), d(k), d(k+1), …,d(n)},則d(k)就被稱為k-距離。也就是說,k-距離是點p(i)到所有點(除了p(i)點)之間距離第k近的距離。對待聚類集合中每個點p(i)都計算k-距離,最後得到所有點的k-距離集合E={e(1), e(2), …, e(n)}。
根據經驗計算半徑Eps:根據得到的所有點的k-距離集合E,對集合E進行升序排序後得到k-距離集合E』,需要擬合一條排序後的E』集合中k-距離的變化曲線圖,然後繪出曲線,通過觀察,將急劇發生變化的位置所對應的k-距離的值,確定為半徑Eps的值。
根據經驗計算最少點的數量MinPts:確定MinPts的大小,實際上也是確定k-距離中k的值,DBSCAN演算法取k=4,則MinPts=4。
另外,如果覺得經驗值聚類的結果不滿意,可以適當調整Eps和MinPts的值,經過多次迭代計算對比,選擇最合適的參數值。可以看出,如果MinPts不變,Eps取得值過大,會導致大多數點都聚到同一個簇中,Eps過小,會導致已一個簇的分裂;如果Eps不變,MinPts的值取得過大,會導致同一個簇中點被標記為雜訊點,MinPts過小,會導致發現大量的核心點。
DBSCAN演算法,需要輸入2個參數,這兩個參數的計算都來自經驗知識。半徑Eps的計算依賴於計算k-距離,DBSCAN取k=4,也就是設置MinPts=4,然後需要根據k-距離曲線,根據經驗觀察找到合適的半徑Eps的值,下面的演算法實現過程中,我們會詳細說明。對於演算法的實現,首先我們概要地描述一下實現的過程:
1)解析樣本數據文件。
2)計算每個點與其他所有點之間的歐幾里德距離。
3)計算每個點的k-距離值,並對所有點的k-距離集合進行升序排序,輸出的排序後的k-距離值。
4)將所有點的k-距離值,在Excel中用散點圖顯示k-距離變化趨勢。
5)根據散點圖確定半徑Eps的值。)根據給定MinPts=4,以及半徑Eps的值,計算所有核心點,並建立核心點與到核心點距離小於半徑Eps的點的映射。
6)根據得到的核心點集合,以及半徑Eps的值,計算能夠連通的核心點,得到雜訊點。
7)將能夠連通的每一組核心點,以及到核心點距離小於半徑Eps的點,都放到一起,形成一個簇。
8)選擇不同的半徑Eps,使用DBSCAN演算法聚類得到的一組簇及其雜訊點,使用散點圖對比聚類效果。
『肆』 cvfitline用的什麼演算法
1、cvLoadImage:將圖像文件載入至內存;
2、cvNamedWindow:在屏幕上創建一個窗口;
3、cvShowImage:在一個已創建好的窗口中顯示圖像;
4、cvWaitKey:使程序暫停,等待用戶觸發一個按鍵操作;
5、cvReleaseImage:釋放圖像文件所分配的內存;
6、cvDestroyWindow:銷毀顯示圖像文件的窗口;
7、cvCreateFileCapture:通過參數設置確定要讀入的AVI文件;
8、cvQueryFrame:用來將下一幀文件載入內存;
9、cvReleaseCapture:釋放CvCapture結構開辟的內存空間;
10、cvCreateTrackbar:創建一個滾動條;
11、cvSetCaptureProperty:設置CvCapture對象的各種屬性;
12、cvGetCaptureProperty:查詢CvCapture對象的各種屬性;
13、cvGetSize:當前圖像結構的大小;
14、cvSmooth:對圖像進行平滑處理;
15、cvPyrDown:圖像金字塔,降采樣,圖像縮小為原來四分之一;
16、cvCanny:Canny邊緣檢測;
17、cvCreateCameraCapture:從攝像設備中讀入數據;
18、cvCreateVideoWriter:創建一個寫入設備以便逐幀將流寫入文件;
19、cvWriteFrame:逐幀將流寫入文件;
20、cvReleaseVideoWriter:釋放CvVideoWriter結構開辟的內存空間;
21、CV_MAT_ELEM:從矩陣中得到一個元素;
22、cvAbs:計算數組中所有元素的絕對值;
23、cvAbsDiff:計算兩個數組差值的絕對值;
24、cvAbsDiffS:計算數組和標量差值的絕對值;
25、cvAdd:兩個數組的元素級的加運算;
26、cvAddS:一個數組和一個標量的元素級的相加運算;
27、cvAddWeighted:兩個數組的元素級的加權相加運算(alpha運算);
28、cvAvg:計算數組中所有元素的平均值;
29、cvAvgSdv:計算數組中所有元素的絕對值和標准差;
30、cvCalcCovarMatrix:計算一組n維空間向量的協方差;
31、cvCmp:對兩個數組中的所有元素運用設置的比較操作;
32、cvCmpS:對數組和標量運用設置的比較操作;
33、cvConvertScale:用可選的縮放值轉換數組元素類型;
34、cvCopy:把數組中的值復制到另一個數組中;
35、cvCountNonZero:計算數組中非0值的個數;
36、cvCrossProct:計算兩個三維向量的向量積(叉積);
37、cvCvtColor:將數組的通道從一個顏色空間轉換另外一個顏色空間;
38、cvDet:計算方陣的行列式;
39、cvDiv:用另外一個數組對一個數組進行元素級的除法運算;
40、cvDotProct:計算兩個向量的點積;
41、cvEigenVV:計算方陣的特徵值和特徵向量;
42、cvFlip:圍繞選定軸翻轉;
43、cvGEMM:矩陣乘法;
44、cvGetCol:從一個數組的列中復制元素;
45、cvGetCols:從數據的相鄰的多列中復制元素;
46、cvGetDiag:復制數組中對角線上的所有元素;
47、cvGetDims:返回數組的維數;
48、cvGetDimSize:返回一個數組的所有維的大小;
49、cvGetRow:從一個數組的行中復制元素值;
50、cvGetRows:從一個數組的多個相鄰的行中復制元素值;
51、cvGetSize:得到二維的數組的尺寸,以CvSize返回;
52、cvGetSubRect:從一個數組的子區域復制元素值;
53、cvInRange:檢查一個數組的元素是否在另外兩個數組中的值的范圍內;
54、cvInRangeS:檢查一個數組的元素的值是否在另外兩個標量的范圍內;
55、cvInvert:求矩陣的逆;
56、cvMahalonobis:計算兩個向量間的馬氏距離;
57、cvMax:在兩個數組中進行元素級的取最大值操作;
58、cvMaxS:在一個數組和一個標量中進行元素級的取最大值操作;
59、cvMerge:把幾個單通道圖像合並為一個多通道圖像;
60、cvMin:在兩個數組中進行元素級的取最小值操作;
61、cvMinS:在一個數組和一個標量中進行元素級的取最小值操作;
62、cvMinMaxLoc:尋找數組中的最大最小值;
63、cvMul:計算兩個數組的元素級的乘積(點乘);
64、cvNot:按位對數組中的每一個元素求反;
65、cvNormalize:將數組中元素進行歸一化;
66、cvOr:對兩個數組進行按位或操作;
67、cvOrs:在數組與標量之間進行按位或操作;
68、cvRece:通過給定的操作符將二維數組簡為向量;
69、cvRepeat:以平鋪的方式進行數組復制;
70、cvSet:用給定值初始化數組;
71、cvSetZero:將數組中所有元素初始化為0;
72、cvSetIdentity:將數組中對角線上的元素設為1,其他置0;
73、cvSolve:求出線性方程組的解;
74、cvSplit:將多通道數組分割成多個單通道數組;
75、cvSub:兩個數組元素級的相減;
76、cvSubS:元素級的從數組中減去標量;
77、cvSubRS:元素級的從標量中減去數組;
78、cvSum:對數組中的所有元素求和;
79、cvSVD:二維矩陣的奇異值分解;
80、cvSVBkSb:奇異值回代計算;
81、cvTrace:計算矩陣跡;
82、cvTranspose:矩陣的轉置運算;
83、cvXor:對兩個數組進行按位異或操作;
84、cvXorS:在數組和標量之間進行按位異或操作;
85、cvZero:將所有數組中的元素置為0;
86、cvConvertScaleAbs:計算可選的縮放值的絕對值之後再轉換數組元素的類型;
87、cvNorm:計算數組的絕對范數, 絕對差分范數或者相對差分范數;
88、cvAnd:對兩個數組進行按位與操作;
89、cvAndS:在數組和標量之間進行按位與操作;
90、cvScale:是cvConvertScale的一個宏,可以用來重新調整數組的內容,並且可以將參數從一種數
據類型轉換為另一種;
91、cvT:是函數cvTranspose的縮寫;
92、cvLine:畫直線;
93、cvRectangle:畫矩形;
94、cvCircle:畫圓;
95、cvEllipse:畫橢圓;
96、cvEllipseBox:使用外接矩形描述橢圓;
97、cvFillPoly、cvFillConvexPoly、cvPolyLine:畫多邊形;
98、cvPutText:在圖像上輸出一些文本;
99、cvInitFont:採用一組參數配置一些用於屏幕輸出的基本個特定字體;
100、cvSave:矩陣保存;
101、cvLoad:矩陣讀取;
102、cvOpenFileStorage:為讀/寫打開存儲文件;
103、cvReleaseFileStorage:釋放存儲的數據;
104、cvStartWriteStruct:開始寫入新的數據結構;
105、cvEndWriteStruct:結束寫入數據結構;
106、cvWriteInt:寫入整數型;
107、cvWriteReal:寫入浮點型;
108、cvWriteString:寫入字元型;
109、cvWriteComment:寫一個XML或YAML的注釋字串;
110、cvWrite:寫一個對象;
111、cvWriteRawData:寫入多個數值;
112、cvWriteFileNode:將文件節點寫入另一個文件存儲器;
113、cvGetRootFileNode:獲取存儲器最頂層的節點;
114、cvGetFileNodeByName:在映圖或存儲器中找到相應節點;
115、cvGetHashedKey:為名稱返回一個惟一的指針;
116、cvGetFileNode:在映圖或文件存儲器中找到節點;
117、cvGetFileNodeName:返迴文件的節點名;
118、cvReadInt:讀取一個無名稱的整數型;
119、cvReadIntByName:讀取一個有名稱的整數型;
120、cvReadReal:讀取一個無名稱的浮點型;
121、cvReadRealByName:讀取一個有名稱的浮點型;
122、cvReadString:從文件節點中尋找字元串;
123、cvReadStringByName:找到一個有名稱的文件節點並返回它;
124、cvRead:將對象解碼並返回它的指針;
125、cvReadByName:找到對象並解碼;
126、cvReadRawData:讀取多個數值;
127、cvStartReadRawData:初始化文件節點序列的讀取;
128、cvReadRawDataSlice:讀取文件節點的內容;
129、cvGetMoleInfo:檢查IPP庫是否已經正常安裝並且檢驗運行是否正常;
130、cvResizeWindow:用來調整窗口的大小;
131、cvSaveImage:保存圖像;
132、cvMoveWindow:將窗口移動到其左上角為x,y的位置;
133、cvDestroyAllWindow:用來關閉所有窗口並釋放窗口相關的內存空間;
134、cvGetTrackbarPos:讀取滑動條的值;
135、cvSetTrackbarPos:設置滑動條的值;
136、cvGrabFrame:用於快速將幀讀入內存;
137、cvRetrieveFrame:對讀入幀做所有必須的處理;
138、cvConvertImage:用於在常用的不同圖像格式之間轉換;
139、cvErode:形態腐蝕;
140、cvDilate:形態學膨脹;
141、cvMorphologyEx:更通用的形態學函數;
142、cvFloodFill:漫水填充演算法,用來進一步控制哪些區域將被填充顏色;
143、cvResize:放大或縮小圖像;
144、cvPyrUp:圖像金字塔,將現有的圖像在每個維度上都放大兩倍;
145、cvPyrSegmentation:利用金字塔實現圖像分割;
146、cvThreshold:圖像閾值化;
147、cvAcc:可以將8位整數類型圖像累加為浮點圖像;
148、cvAdaptiveThreshold:圖像自適應閾值;
149、cvFilter2D:圖像卷積;
150、cvCopyMakeBorder:將特定的圖像輕微變大,然後以各種方式自動填充圖像邊界;
151、cvSobel:圖像邊緣檢測,Sobel運算元;
152、cvLaplace:拉普拉斯變換、圖像邊緣檢測;
153、cvHoughLines2:霍夫直線變換;
154、cvHoughCircles:霍夫圓變換;
155、cvRemap:圖像重映射,校正標定圖像,圖像插值;
156、cvWarpAffine:稠密仿射變換;
157、cvGetQuadrangleSubPix:仿射變換;
158、cvGetAffineTransform:仿射映射矩陣的計算;
159、cvCloneImage:將整個IplImage結構復制到新的IplImage中;
160、cv2DRotationMatrix:仿射映射矩陣的計算;
161、cvTransform:稀疏仿射變換;
162、cvWarpPerspective:密集透視變換(單應性);
163、cvGetPerspectiveTransform:計算透視映射矩陣;
164、cvPerspectiveTransform:稀疏透視變換;
165、cvCartToPolar:將數值從笛卡爾空間到極坐標(極性空間)進行映射;
166、cvPolarToCart:將數值從極性空間到笛卡爾空間進行映射;
167、cvLogPolar:對數極坐標變換;
168、cvDFT:離散傅里葉變換;
169、cvMulSpectrums:頻譜乘法;
170、cvDCT:離散餘弦變換;
171、cvIntegral:計算積分圖像;
172、cvDistTransform:圖像的距離變換;
173、cvEqualizeHist:直方圖均衡化;
174、cvCreateHist:創建一新直方圖;
175、cvMakeHistHeaderForArray:根據已給出的數據創建直方圖;
176、cvNormalizeHist:歸一化直方圖;
177、cvThreshHist:直方圖閾值函數;
178、cvCalcHist:從圖像中自動計算直方圖;
179、cvCompareHist:用於對比兩個直方圖的相似度;
180、cvCalcEMD2:陸地移動距離(EMD)演算法;
181、cvCalcBackProject:反向投影;
182、cvCalcBackProjectPatch:圖塊的方向投影;
183、cvMatchTemplate:模板匹配;
184、cvCreateMemStorage:用於創建一個內存存儲器;
185、cvCreateSeq:創建序列;
186、cvSeqInvert:將序列進行逆序操作;
187、cvCvtSeqToArray:復制序列的全部或部分到一個連續內存數組中;
188、cvFindContours:從二值圖像中尋找輪廓;
189、cvDrawContours:繪制輪廓;
190、cvApproxPoly:使用多邊形逼近一個輪廓;
191、cvContourPerimeter:輪廓長度;
192、cvContoursMoments:計算輪廓矩;
193、cvMoments:計算Hu不變矩;
194、cvMatchShapes:使用矩進行匹配;
195、cvInitLineIterator:對任意直線上的像素進行采樣;
196、cvSampleLine:對直線采樣;
197、cvAbsDiff:幀差;
198、cvWatershed:分水嶺演算法;
199、cvInpaint:修補圖像;
200、cvGoodFeaturesToTrack:尋找角點;
201、cvFindCornerSubPix:用於發現亞像素精度的角點位置;
202、cvCalcOpticalFlowLK:實現非金字塔的Lucas-Kanade稠密光流演算法;
203、cvMeanShift:mean-shift跟蹤演算法;
204、cvCamShift:camshift跟蹤演算法;
205、cvCreateKalman:創建Kalman濾波器;
206、cvCreateConDensation:創建condensation濾波器;
207、cvConvertPointsHomogenious:對齊次坐標進行轉換;
208、cvFindChessboardCorners:定位棋盤角點;
209、cvFindHomography:計算單應性矩陣;
210、cvRodrigues2:羅德里格斯變換;
211、cvFitLine:直線擬合演算法;
212、cvCalcCovarMatrix:計算協方差矩陣;
213、cvInvert:計算協方差矩陣的逆矩陣;
214、cvMahalanobis:計算Mahalanobis距離;
215、cvKMeans2:K均值;
216、cvCloneMat:根據一個已有的矩陣創建一個新矩陣;
217、cvPreCornerDetect:計算用於角點檢測的特徵圖;
218、cvGetImage:CvMat圖像數據格式轉換成IplImage圖像數據格式;
219、cvMatMul:兩矩陣相乘;
『伍』 最小二乘法擬合圓演算法
最小二乘法擬合圓演算法的實現包含以下步驟。
首先,定義變數用於計算圓的參數。變數包括點的數量N,以及擬合圓的參數a、b、c。
公式中,a、b、c分別對應圓心坐標和半徑。具體計算公式如下:
計算圓心A、B坐標與半徑R,核心在於利用最小二乘法擬合圓的公式。
對於輸入的點集,通過累計求和操作得到相關變數。繼而利用這些變數計算圓的參數。
最終,演算法輸出圓心坐標和半徑值。源碼具體實現如下: