史式計演算法
① 每個國家古代的計數方法
古時候人們計數的方法各國都不一樣。列舉以下幾個:
1、中國古代的計數系統
中國在三千多年前的商代,已經建立起了完整的十進制系統,自從發明了算籌這種計算工具以後,中國人的計數系統有了很大的進步。在兩千多年前的春秋戰國時期,算籌在中國人手裡已經使用得非常普遍了。算籌就是一種細竹棍,它表示數字1——9有兩種方式:
縱式、橫式。
表示多位數字的方法是縱橫相間,這就避免了符號不獨立可能引起的混亂,例如22837的表示法是。由此可知,中國古代的計數系統是典型的十進位值制。
算」的原意就指的是算籌,中間的「目」表示桌上擺放若干根算籌,下面「艹」是支架,上面「&<1950;」表示它的質料。與算、籌同義的字還有「策」,古書稱「木細枝為策」,因此運籌、運算、計策、計算等在古代是近義詞。
《史記·張良》中有「運籌策帷幄之中,決勝於千里之外」的說法,說明當時軍事家在指揮一場戰役之前,在帳中也要用算籌作為工具進行計算和謀劃。
事實上,採用幾作進位制是不重要的,重要的是要有位值制概念。巴比倫人和瑪雅人有位值制概念,卻都不是十進制;古埃及和古希臘是十進制,卻都沒有位值制,只有中國是最早採用十進位值制的國家。
英國著名科學史家李約瑟曾說:「如果沒有這種十進位值制,就幾乎不可能出現我們現在這個統一化的世界了。」因此,首創十進位值制,是中國古代人民對世界做出的一項不可磨滅的貢獻。
2、古埃及在三千多年前的計數法如下
例如258寫作。這種計數法是十進制的,但沒有位值制;就以上符號而言,最大隻能表示99999,而且寫起來非常麻煩,我們現在只用5個符號就能表示的數字99999,他們卻要用45個符號。
3、古希臘人的計數系統
古希臘人的計數系統是十進制,但沒有位值制概念。他們用27個古希臘字母α、β、γ等在其上畫一橫杠來表示數字,前9個字母分別表示1——9,中間9個字母表示10——90,後9個字母表示100——900,按這種方式最大隻能表示999。
為了表示更大的數目,他們又引進新的計數符號。這種計數系統十分復雜,但由於沒有引進位值制,所以它無法保證任意大的數目都有相應的符號。
(1)史式計演算法擴展閱讀
阿拉伯數字的起源:
公元500年前後,隨著經濟、種姓制度的興起和發展,印度次大陸西北部的旁遮普地區的數學一直處於領先地位。天文學家阿葉彼海特在簡化數字方面有了新的突破:他把數字記在一個個格子里,如果第一格里有一個符號,比如是一個代表1的圓點,那麼第二格里的同樣圓點就表示十,而第三格里的圓點就代表一百。
這樣,不僅是數字元號本身,而且是它們所在的位置次序也同樣擁有了重要意義。以後,印度的學者又引出了作為零的符號。可以這么說,這些符號和表示方法是阿拉伯數字的老祖先了。
阿拉伯數字使用注意事項:
阿拉伯數字容易通過改變小數點位置而產生變化。所以在特殊場合(如銀行)不能完全替代大寫的漢字。
阿拉伯數字使用規則:
在科技書刊中,阿拉伯數字因其「筆畫簡單、結構科學、形象清晰、組數簡短」等特點,有著很高的使用頻率,其用法是否正確及規范,直接關繫到科技期刊的質量。
印度數字:
公元3世紀,古印度的一位科學家巴格達發明了阿拉伯數字。最古的計數目大概至多到3,為了要設想「4」這個數字,就必須把2和2加起來,5是2加2加1,3這個數字是2加1得來的,大概較晚才出現了用手寫的五指表示5這個數字和用雙手的十指表示10這個數字。
這個原則實際也是數學計算的基礎。羅馬的計數只有到Ⅴ(即5)的數字,Ⅹ(即10)以內的數字則由Ⅴ(5)和其它數字組合起來。Ⅹ是兩個Ⅴ的組合,同一數字元號根據它與其他數字元號位置關系而具有不同的量。
這樣就開始有了數字位置的概念,在數學上這個重要的貢獻應歸於兩河流域的古代居民,後來古鯿人在這個基礎上加以改進,並發明了表達數字的1,2,3,4,5,6,7,8,9,0十個符號,這就成為記數的基礎。八世紀印度出現了有零的符號的最老的刻版記錄。當時稱零為首那。
兩百年後,團結在伊斯蘭教下的阿拉伯人征服了周圍的民族,建立了東起印度,西從非洲到西班牙的阿拉伯帝國。後來,這個伊斯蘭大帝國分裂成東、西兩個國家。
由於這兩個國家的各代君王都獎勵文化和藝術,所以兩國的首都都非常繁榮,而其中特別繁華的是東都——巴格達,西來的希臘文化,東來的印度文化都匯集到這里來了。阿拉伯人將兩種文化理解消化,從而創造了獨特的阿拉伯文化。
大約700年前後,阿拉伯人征服了旁遮普地區,他們吃驚地發現:被征服地區的數學比他們先進。於是設法吸收這些數字。
771年,印度北部的數學家被抓到了阿拉伯的巴格達,被迫給當地人傳授新的數學符號和體系,以及印度式的計算方法(用的計演算法)。由於印度數字和印度計數法既簡單又方便,其優點遠遠超過了其他的計演算法,阿拉伯的學者們很願意學習這些先進知識,商人們也樂於採用這種方法去做生意。
後來,阿拉伯人把這種數字傳入西班牙。公元10世紀,又由教皇熱爾貝·奧里亞克傳到歐洲其他國家。公元1200年左右,歐洲的學者正式採用了這些符號和體系。
至13世紀,在義大利比薩的數學家費婆拿契的倡導下,普通歐洲人也開始採用阿拉伯數字,15世紀時這種現象已相當普遍。那時的阿拉伯數字的形狀與現代的阿拉伯數字尚不完全相同,只是比較接近而已,為使它們變成1、2、3、4、5、6、7、8、9、0的書寫方式,又有許多數學家花費了不少心血。
② 公元紀年法怎樣算
公元紀年法的計算方式
公元紀年法是一種以基督誕生年為起始點的歷史年代計算方法。計算過程相對簡單直接,下面詳細介紹具體的計算方式。
一、確定基準點
公元紀年的基準點是公元1年,對應的基督誕生的年份。計算任何年份的公元紀年時,首先要明確這一基準點。
二、推算年份
根據歷史資料和文獻資料,可以向後推算各年份。每向後一年,公元紀年便增加一年。比如公元後第二年是公元2年,第三年是公元3年,以此類推。同樣地,也可以向前推算至公元前年份。比如基督誕生前的年份就是公元前年份,具體推算方式同理。需要注意的是,具體的年份劃分和歷史事件需要結合歷史背景進行理解。
三、注意事項
在計算公元紀年時,還要考慮到某些特殊情況,比如閏年的計算。閏年是基於地球繞太陽公轉的周期設立的,一般為每四年有一次的特殊年份。此外,還需要了解不同地區的紀年方式可能存在差異,例如中國的干支紀年法就是一個特殊的例子。了解這些特殊紀年方法有助於更全面地掌握歷史背景和文化內涵。
總的來說,公元紀年法以基督誕生年為基準點,按照時間線進行前後推算,結合歷史事件和特定規則來進行計算。掌握這一計算方法有助於更准確地理解和研究歷史事件的時序關系。
③ 古代的人如何運算數學的加減乘除
算籌
根據史書的記載和考古材料的發現,古代的算籌實際上是一根根同樣長短和粗細的小棍子,一般長為13--14cm,徑粗0.2~0.3cm,多用竹子製成,也有用木頭、獸骨、象牙、金屬等材料製成的,大約二百七十幾枚為一束,放在一個布袋裡,系在腰部隨身攜帶。需要記數和計算的時候,就把它們取出來,放在桌上、炕上或地上都能擺弄。別看這些都是一根根不起眼的小棍子,在中國數學史上它們卻是立有大功的。而它們的發明,也同樣經歷了一個漫長的歷史發展過程。
在算籌計數法中,以縱橫兩種排列方式來表示單位數目的,其中1-5均分別以縱橫方式排列相應數目的算籌來表示,6-9則以上面的算籌再加下面相應的算籌來表示。表示多位數時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空。這種計數法遵循十進位制。
算籌的出現年代已經不可考,但據史料推測,算籌最晚出現在春秋晚期戰國初年(公元前722年~公元前221年),一直到算盤發明推廣之前都是中國最重要的計算工具。
算籌的發明就是在以上這些記數方法的歷史發展中逐漸產生的。它最早出現在何時,現在已經不可查考了,但至遲到春秋戰國;算籌的使用已經非常普遍了。前面說過,算籌是一根根同樣長短和粗細的小棍子,那麼怎樣用這些小棍子來表示各種各樣的數目呢?
那麼為什麼又要有縱式和橫式兩種不同的擺法呢?這就是因為十進位制的需要了。所謂十進位制,又稱十進位值制,包含有兩方面的含義。其一是"十進制",即每滿十數進一個單位,十個一進為十,十個十進為百,十個百進為千……其二是"位值制,即每個數碼所表示的數值,不僅取決於這個數碼本身,而且取決於它在記數中所處的位置。如同樣是一個數碼"2",放在個位上表示2,放在十位上就表示20,放在百位上就表示200,放在千位上就表示2000……在我國商代的文字記數系統中,就已經有了十進位值制的蔭芽,到了算籌記數和運算時,就更是標準的十進位值制了。
按照中國古代的籌算規則,算籌記數的表示方法為:個位用縱式,十位用橫式,百位再用縱式,千位再用橫式,萬位再用縱式……這樣從右到左,縱橫相間,以此類推,就可以用算籌表示出任意大的自然數了。由於它位與位之間的縱橫變換,且每一位都有固定的擺法,所以既不會混淆,也不會錯位。毫無疑問,這樣一種算籌記數法和現代通行的十進位制記數法是完全一致的。
中國古代十進位制的算籌記數法在世界數學史上是一個偉大的創造。把它與世界其他古老民族的記數法作一比較,其優越性是顯而易見的。古羅馬的數字系統沒有位值制,只有七個基本符號,如要記稍大一點的數目就相當繁難。古美洲瑪雅人雖然懂得位值制,但用的是20進位;古巴比倫人也知道位值制,但用的是60進位。20進位至少需要19個數碼,60進位則需要59個數碼,這就使記數和運算變得十分繁復,遠不如只用9個數碼便可表示任意自然數的十進位制來得簡捷方便。中國古代數學之所以在計算方面取得許多卓越的成就,在一定程度上應該歸功於這一符合十進位制的算籌記數法。馬克思在他的《數學手稿》一書中稱十進位記數法為"最妙的發明之一",確實是一點也不過分的。
二進制思想的開創國
著名的哲學家數學家萊布尼茨(1646-1716)發明了對現代計算機系統有著重要意義的二進制,不過他認為在此之前,中國的《易經》中已經提到了有關二進制的初步思想。當代的許多科學家認為易經中並不含有復雜的二進制思想,可是這本中國古籍中的一些基本思想和二進制在很大程度上仍然有著千絲萬縷的聯系。
元始的《靈寶經》裡面把陰陽定義為陽是自冬至到夏至的上升的氣,陰為從夏至到冬至下降的氣,這是對地球周期運動的最簡練認識。陰陽是一種物質認識,後來轉化為思想方式,反者道之動等等,都是這種思想的表現。從而開創了對立統一的思想方式,實際上計算機的電子脈沖的思想是與之一致的,采樣定律也是與之一致的。
《易經》是我國伏羲、周文王等當政者積累觀天測算經驗而成的關於天象氣象和人變易的經典,從八卦到六十四卦,就是二進制三位到六位表達,上世紀八十年代還有四位計算機,可以說,周文王的六十四卦在表達能力上已經高於四位計算機。
十進制的使用
《卜辭》中記載說,商代的人們已經學會用一、二、三、四、五、六、七、八、九、十、百、千、萬這13個單字記十萬以內的任何數字,但是現在能夠證實的當時最大的數字是三萬。甲骨卜辭中還有奇數、偶數和倍數的概念。
十進位位值制記數法包括十進位和位值制兩條原則,"十進"即滿十進一;"位值"則是同一個數位在不同的位置上所表示的數值也就不同,如三位數"111",右邊的"1"在個位上表示1個一,中間的"1"在十位上就表示1個十,左邊的"1"在百位上則表示1個百。這樣,就使極為困難的整數表示和演算變得如此簡便易行,以至於人們往往忽略它對數學發展所起的關鍵作用。
我們有個成語叫"屈指可數",說明古代人數數確實是離不開手指的,而一般人的手指恰好有十個。因此十進制的使用似乎應該是極其自然的事。但實際情況並不盡然。在文明古國巴比倫使用的是60進位制(這一進位制到現在仍留有痕跡,如一分=60秒等)另外還有採用二十進位制的。古代埃及倒是很早就用10進位制,但他們卻不知道位值制。所謂位值制就是一個數碼表示什麼數,要看它所在的位置而定。位值制是千百年來人類智慧的結晶。零是位值制記數法的精要所在。但它的出現卻並非易事。我國是最早使用十進制記數法,且認識到進位制的國家。我們的口語或文字表達的數字也遵守這一原則,比如一百二十七。同時我們對0的認識最早。
十進制是中國人民的一項傑出創造,在世界數學史上有重要意義。著名的英國科學史學家李約瑟教授曾對中國商代記數法予以很高的評價,"如果沒有這種十進制,就幾乎不可能出現我們現在這個統一化的世界了",李約瑟說"總的說來,商代的數字系統比同一時代的古巴比倫和古埃及更為先進更為科學。"
分數和小數的最早運用
分數的應用
最初分數的出現,並非由除法而來。分數被看作一個整體的一部分。"分"在漢語中有"分開""分割"之意。後來運算過程中也出現了分數,它表示兩整數比。分數的加減乘除運算我們小學就已完全掌握了。很簡單,是不是?不過在七、八百年以前的歐洲,如果你有這種水平那麼就可以說相當了不起了。那時精通自然數的四則運算就已達到了學者水平。至於分數,對當時人來說簡直難於上青天。德國有句諺語形容一個人陷入絕境,就說:"掉到分數里去了"。為什麼會如此呢?這都是笨拙的記數法導致的。在我國古代,《九章算術》中就有了系統的分數運算方法,這比歐洲大約早1400年。
西漢時期,張蒼、耿壽昌等學者整理、刪補自秦代以來的數學知識,編成了《九章算術》。在這本數學經典的《方田》章中,提出了完整的分數運演算法則。
從後來劉徽所作的《九章算術注》可以知道,在《九章算術》中,講到約分、合分(分數加法)、減分(分數減法)、乘分(分數乘法)、除分(分數除法)的法則,與我們現在的分數運演算法則完全相同。另外,還記載了課分(比較分數大小)、平分(求分數的平均值)等關於分數的知識,是世界上最早的系統敘述分數的著作。
分數運算,大約在15世紀才在歐洲流行。歐洲人普遍認為,這種演算法起源於印度。實際上,印度在七世紀婆羅門笈多的著作中才開始有分數運演算法則,這些法則都與《九章算術》中介紹的法則相同。而劉徽的《九章算術注》成書於魏景元四年(263年),所以,即使與劉徽的時代相比,我們也要比印度早400年左右。
小數的最早使用
劉徽在《九章算術注》中介紹,開方不盡時用十進分數(徽數,即小數)去逼近,首先提出了關於十進小數的概念。到公元 1300年前後,元代劉瑾所著《律呂成書》中,已將106368.6312寫成
把小數部分降低一行寫在整數部分的後邊。而西方的斯台汶直到1585年才有十進小數的概念,且他的表示方法遠不如中國先進,如上述的小數,他記成或106368。
九九表的使用
作為啟蒙教材,我們都背過九九乘法表:一一得一、一二得二……九九八十一。而古代是從"九九八十一"開始,因此稱"九九表"。九九表的使用,對於完成乘法是大有幫助的。齊恆公納賢的故事說明,到公元前7世紀時,九九歌訣已不希罕。也許有人認為這種成績不值一提。但在古代埃及作乘法卻要用倍乘的方式呢。舉個例子。如算23×13,就需要從23開始,加倍得到23×2,23×4,23×8,然後注意到13=1+4+8,於是23+23×4+23×8加起來的結果就是23×13。從比較中不難看出使用九九表的優越性了。
根據考古專家在湖南張家界古人堤漢代遺址出土的簡牘上發現的漢代"九九乘法表",竟與現今生活中使用的乘法口訣表有著驚人的一致。這枚記載有"九九乘法表"的簡牘是木質的,大約有22厘米長,殘損比較嚴重。此前在湘西里耶古城出土的一枚秦簡上也發現了距今2200多年的乘法口訣表,並被考證為中國現今發現的最早的乘法口訣表實物。
除了里耶秦簡外,與張家界古人堤遺址發現的這枚簡牘樣式基本一致的"九九乘法表"還曾在樓蘭文書中見到過,那是寫在兩張殘紙上的九九乘法表,為瑞典探險家斯文赫定在上個世紀初期發掘。
乘法表在古代並非中國一家獨有,古巴比倫的泥版書上也有乘法表。但漢字(包括數目字)單音節發聲的特點,使之讀起來朗朗上口;後來發展起來的珠算口訣也承繼了這一特點,對於運算速度的提高和演算法的改進起到一定作用。
負數的使用
人們在解方程或其它數的運算過程中,往往要碰到從較小數減去較大數的情形,另外,還遇到了增加與減小,盈餘與虧損等互為相反意義的量,這樣,人們自然地引進了負數。
負數的引進,是中國古代數學家對數學的一個巨大貢獻。在我國古代秦、漢時期的算經《九章算術》的第八章"方程"中,就自由地引入了負數,如負數出現在方程的系數和常數項中,把"賣(收入錢)"作為正,則"買(付出錢)"作為負,把"余錢"作為正,則"不足錢"作為負。在關於糧谷計算的問題中,是以益實(增加糧谷)為正,損實(減少糧谷)為負等,並且該書還指出:"兩算得失相反,要以正負以名之"。當時是用算籌來進行計算的,所以在算籌中,相應地規定以紅籌為正,黑籌為負;或將算籌直列作正,斜置作負。這樣,遇到具有相反意義的量,就能用正負數明確地區別了。
在《九章算術》中,除了引進正負數的概念外,還完整地記載了正負數的運演算法則,實際上是正負數加減法的運演算法則,也就是書中解方程時用到的"正負術"即"同名相除,異名相益,正無入正之,負無入負之;其異名相除,同名相益,正無入正之,負無入負之。"這段話的前四句說的是正負數減法法則,後四句說的是正負數加法法則。它的意思是:同號兩數相減,等於其絕對值相減;異號兩數相減,等於其絕對值相加;零減正數得負數,零減負數得正數。異號兩數相加,等於其絕對值相減;同號兩數相加,等於其絕對值相加;零加正數得正數,零加負數得負數,當然,從現代數學觀點看,古書中的文字敘述還不夠嚴謹,但直到公元17世紀以前,這還是正負數加減運算最完整的敘述。
在國外,負數出現得很晚,直至公元1150年(比《九章算術》成書晚l千多年),印度人巴土卡洛首先提到了負數,而且在公元17世紀以前,許多數學家一直採取不承認的態度。如法國大數學家韋達,盡管在代數方面作出了巨大貢獻,但他在解方程時卻極力迴避負數,並把負根統統捨去。有許多數學家由於把零看作"沒有",他們不能理解比"沒有"還要"少"的現象,因而認為負數是"荒謬的"。直到17世紀,笛卡兒創立了坐標系,負數獲得了幾何解釋和實際意義,才逐漸得到了公認。
從上面可以看出,負數的引進,是我國古代數學家貢獻給世界數學的一份寶貴財富。負數概念引進後,整數集和有理數集就完整地形成了。
圓周率的計算
圓周率是數學中最重要的常數之一。對它的計算,可以作為顯示出一個國家古代數學發展的水平的尺度之一。而我國古代數學在這方面取得了令世人矚目的成績。
我國古代最初把圓周率取作3,這雖應用起來簡便,但太不準確。在求准確圓周率值的征途中,首先邁出關鍵一步的是劉徽。他創立割圓術,用圓內接正多邊形無限逼近圓而求取圓周率值。用這種方法他求得圓周率的近似值為3.14,也有人認為他得到了更好的結果:3.1416。青出於藍,而勝於藍。後繼者祖沖之利用割圓術得出了正確的小數點後七位。而且他還給出了約率與密率。密率的發現是數學史上卓越的成就,保持了一千多年的世界紀錄,是一項空前傑作。