變分的運演算法則
㈠ 牛頓有哪些成就
1、力學成就
第一定律(即慣性定律)
任何一個物體在不受任何外力或受到的力平衡時(Fnet=0),總保持勻速直線運動或靜止狀態,直到有作用在它上面的外力迫使它改變這種狀態為止。
第二定律
①牛頓第二定律是力的瞬時作用規律。力和加速度同時產生、同時變化、同時消逝。
②F=ma是一個矢量方程,應用時應規定正方向,凡與正方向相同的力或加速度均取正值,反之取負值,一般常取加速度的方向為正方向。
③根據力的獨立作用原理,用牛頓第二定律處理物體在一個平面內運動的問題時,可將物體所受各力正交分解,在兩個互相垂直的方向上分別應用牛頓第二定律的分量形式:Fx=max,Fy=may列方程。
第三定律
表達式F=-F'(F表示作用力,F'表示反作用力,負號表示反作用力F'與作用力F的方向相反)
萬有引力
牛頓是萬有引力定律的發現者,並且在開普勒行星運動定律以及其他人的研究成果上,他用數學方法導出了萬有引力定律。
經典力學體系
牛頓把地球上物體的力學和天體力學統一到一個基本的力學體系中,創立了經典力學理論體系。正確地反映了宏觀物體低速運動的宏觀運動規律,實現了自然科學的第一次大統一。
牛頓流體
牛頓指出流體粘性阻力與剪切率成正比。流體部分之間由於缺乏潤滑性而引起的阻力,如果其他都相同,與流體部分之間分離速度成比例。
2、數學成就
牛頓與萊布尼茨獨立發展出了微積分學,微積分的出現,成了數學發展中除幾何與代數以外的另一重要分支——數學分析,並進一步進進發展為微分幾何、微分方程、變分法等等,這些又反過來促進了理論物理學的發展。
數學上,牛頓的一項被廣泛認可的成就是廣義二項式定理,它適用於任何冪。此外,牛頓發現了牛頓恆等式、牛頓法,分類了立方面曲線(兩變數的三次多項式),為有限差理論作出了重大貢獻,並首次使用了分式指數和坐標幾何學得到丟番圖方程的解。
3、光學成就
牛頓通過三棱鏡實驗得出,白光是由不同顏色(即不同波長)的光混合而成的,不同波長的光有不同的折射率。在可見光中,紅光波長最長,折射率最小;紫光波長最短,折射率最大。牛頓的這一重要發現成為光譜分析的基礎,揭示了光色的秘密。
發明反射式望遠鏡。
4、熱學成就
牛頓確定了冷卻定律,即當物體表面與周圍有溫差時,單位時間內從單位面積上散失的熱量與這一溫差成正比。
5、經濟學成就
牛頓最早提出這金本位制度 。最早實行金幣本位制的國家是英國,1717年著名的物理學家艾薩克·牛頓在擔任英國鑄幣局局長期間將每盎司黃金的價格固定在3英鎊17先令10.5便士。1816年,英國通過了《金本位制度法案》,從法律的形式承認了黃金作為貨幣的本位來發行紙幣。
(1)變分的運演算法則擴展閱讀
艾薩克·牛頓爵士,英國皇家學會會長,英國著名的物理學家,網路全書式的「全才」,著有《自然哲學的數學原理》、《光學》。
他在1687年發表的論文《自然定律》里,對萬有引力和三大運動定律進行了描述。這些描述奠定了此後三個世紀里物理世界的科學觀點,並成為了現代工程學的基礎。他通過論證開普勒行星運動定律與他的引力理論間的一致性,展示了地面物體與天體的運動都遵循著相同的自然定律;為太陽中心說提供了強有力的理論支持,並推動了科學革命。
在力學上,牛頓闡明了動量和角動量守恆的原理,提出牛頓運動定律。在光學上,他發明了反射望遠鏡,並基於對三棱鏡將白光發散成可見光譜的觀察,發展出了顏色理論。他還系統地表述了冷卻定律,並研究了音速。
在數學上,牛頓與戈特弗里德·威廉·萊布尼茨分享了發展出微積分學的榮譽。他也證明了廣義二項式定理,提出了「牛頓法」以趨近函數的零點,並為冪級數的研究做出了貢獻。
在經濟學上,牛頓提出金本位制度。
㈡ 變分原理的變分定義
變分法是研究泛函極值的工具。泛函是指定義域為無限維空間,即曲線空間的函數。例如,在歐氏平面上,曲線的長的函數就是泛函的一個重要例子。泛函可以看作是曲面空間到實數集的任意映射。
函數的微分定義為 \( f(x+\Delta x)-f(x)=f'(x)\Delta x+o(\Delta x) \),那麼泛函的微分(即變分)有類似的定義:\( \Phi(\gamma+h)-\Phi(\gamma)=F+R \),其中 \( F \) 為 \( h \) 的函數,\( R=o(h^2) \)。需要注意的是,這里 \( h \) 不一定是無窮小量。
泛函是可微的,其微分(變分)是參考文獻如下:
1. 錢偉長,《變分法及有限元(上冊)》,科學出版社,1980年8月第一版。
2. Shen Xiaoming(沈孝明),Mixed Compatible Element and Mixed Hybrid Incompatible Element Variational Methods in Dynamic of Viscous Barotropic Fluids,Proceedings of the second international conference on fluid mechanics (Beijing,1993):511-516; APPLIED MATHEMATICS AND MECHANICS (English Edition),Vol.15,No.6,JUN.1994:561-569。
3. 沈孝明,粘性流動的最大功率消耗原理不成立——論自然條件不參加變分兼論變分的定義和運演算法則,北京大學學報,1990,26(3):291-293。
4. Shen Xiaoming(沈孝明),Deformation Power and Complementary Power and so Forth of Compressible Viscous Fluid Flows and Their Applications in Variational Principles,《Some new trends on fluid mechanics and theoretical physics》,Chairman of Editorial committee: C.C.Lin(林家翹),Peking University Press,First Edition 1993:305-307。
5. 沈孝明,粘性流體動力學有限元變分原理,上海力學,1997,18(3):201-206。
6. 沈孝明,非線性彈性體大變形問題的豎缺雀新廣義變分原理,上海力學,1988,9(4):66-72。
此外,以下是一些相關參考文獻:
1. Venables, John, The Variational Principle and some applications. Dept of Physics and Astronomy, Arizona State University, Tempe, Arizona (Graate Course: Quantum Physics)。
2. Williamson, Andrew James, The Variational Principle-- Quantum monte carlo calculations of electronic excitations. Robinson College, Cambridge, Theory of Condensed Matter Group, Cavendish Laboratory. September 1996. (Dissertation of Doctor of Philosophy)。
3. Tokunaga, Kiyohisa, Variational Principle for Electromagnetic Field. Total Integral for Electromagnetic Canonical Action, Part Two, Relativistic Canonical Theory of Electromagnetics, Chapter VI。
㈢ 證明1+1=2是什麼東東
涐捫媞嗵俗 噫図丄の講。1+1=2
伱角手指僦岢苡看詘來!
BUT
ゐ什庅1+1=2侕吥媞3那?
歌德巴赫猜想僦媞研究這嗰.
數學上,還有另一個非常有名的「(1+1)」,它就是著名的哥德巴赫猜想。盡管聽起來很神奇,但它的題面並不費解,只要具備小學三年級的數學水平就就能理解其含義.原來,這是18世紀時,德國數學家哥德巴赫偶然發現,每個不小於6的偶數都是兩個素數之和。例如3+3=6; 11+13=24。他試圖證明自己的發現,卻屢戰屢敗。1742年,無可奈何的哥德巴赫只好求助當時世界上最有權威的瑞士數學家歐拉,提出了自己的猜想。歐拉很快回信說,這個猜想肯定成立,但他無法證明
【哥德巴赫猜想的來源】
[編輯本段]
1729年~1764年,哥德巴赫與歐拉保持了長達三十五年的書信往來。
在1742年6月7日給歐拉的信中,哥德巴赫提出了一個命題。他寫道:
"我的問題是這樣的:
隨便取某一個奇數,比如77,可以把它寫成三個素數之和:
77=53+17+7;
再任取一個奇數,比如461,
461=449+7+5,
也是三個素數之和,461還可以寫成257+199+5,仍然是三個素數之和。這樣,我發現:任何大於7的奇數都是三個素數之和。
但這怎樣證明呢?雖然做過的每一次試驗都得到了上述結果,但是不可能把所有的奇數都拿來檢驗,需要的是一般的證明,而不是一個別的檢驗。"
歐拉回信說,這個命題看來是正確的,但是他也給不出嚴格的證明。同時歐拉又提出了另一個命題:任何一個大於2的偶數都是兩個素數之和,但是這個命題他也沒能給予證明。
不難看出,哥德巴赫的命題是歐拉命題的推論。事實上,任何一個大於5的奇數都可以寫成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若歐拉的命題成立,則偶數2(N-1)可以寫成兩個素數之和,於是奇數2N+1可以寫成三個素數之和,從而,對於大於5的奇數,哥德巴赫的猜想成立。
但是哥德巴赫的命題成立並不能保證歐拉命題的成立。因而歐拉的命題比哥德巴赫的命題要求更高。
現在通常把這兩個命題統稱為哥德巴赫猜想
【哥德巴赫猜想的小史】
[編輯本段]
1742年,哥德巴赫在教學中發現,每個不小於6的偶數都是兩個素數(只能被1和它本身整除的數)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫寫信給當時的大數學家歐拉,歐拉在6月30日給他的回信中說,他相信這個猜想是正確的,但他不能證明。敘述如此簡單的問題,連歐拉這樣首屈一指的數學家都不能證明,這個猜想便引起了許多數學家的注意。從哥德巴赫提出這個猜想至今,許多數學家都不斷努力想攻克它,但都沒有成功。當然曾經有人作了些具體的驗證工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人對33×108以內且大過6之偶數一一進行驗算,哥德巴赫猜想(a)都成立。但嚴格的數學證明尚待數學家的努力。
從此,這道著名的數學難題引起了世界上成千上萬數學家的注意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的"明珠"。人們對哥德巴赫猜想難題的熱情,歷經兩百多年而不衰。世界上許許多多的數學工作者,殫精竭慮,費盡心機,然而至今仍不得其解。
到了20世紀20年代,才有人開始向它靠近。1920年挪威數學家布朗用一種古老的篩選法證明,得出了一個結論:每一個比大偶數n(不小於6)的偶數都可以表示為九個質數的積加上九個質數的積,簡稱9+9。這種縮小包圍圈的辦法很管用,科學家們於是從(9十9)開始,逐步減少每個數里所含質數因子的個數,直到最後使每個數里都是一個質數為止,這樣就證明了哥德巴赫猜想。
目前最佳的結果是中國數學家陳景潤於1966年證明的,稱為陳氏定理:「任何充分大的偶數都是一個質數與一個自然數之和,而後者僅僅是兩個質數的乘積。」通常都簡稱這個結果為大偶數可表示為 「1 + 2」的形式。
■哥德巴赫猜想證明進度相關
在陳景潤之前,關於偶數可表示為 s個質數的乘積 與t個質數的乘積之和(簡稱「s + t」問題)之進展情況如下:
1920年,挪威的布朗證明了「9 + 9」。
1924年,德國的拉特馬赫證明了「7 + 7」。
1932年,英國的埃斯特曼證明了「6 + 6」。
1937年,義大利的蕾西先後證明了「5 + 7」, 「4 + 9」, 「3 + 15」和「2 + 366」。
1938年,蘇聯的布赫夕太勃證明了「5 + 5」。
1940年,蘇聯的布赫夕太勃證明了「4 + 4」。
1948年,匈牙利的瑞尼證明了「1+ c」,其中c是一很大的自然數。
1956年,中國的王元證明了「3 + 4」。
1957年,中國的王元先後證明了 「3 + 3」和「2 + 3」。
1962年,中國的潘承洞和蘇聯的巴爾巴恩證明了「1 + 5」, 中國的王元證明了「1 + 4」。
1965年,蘇聯的布赫 夕太勃和小維諾格拉多夫,及義大利的朋比利證明了「1 + 3 」。
1966年,中國的陳景潤證明了 「1 + 2 」。
從1920年布朗證明"9+9"到1966年陳景潤攻下「1+2」,歷經46年。自"陳氏定理"誕生至今的40多年裡,人們對哥德巴赫猜想猜想的進一步研究,均勞而無功。
■布朗篩法思路相關資料
布朗篩法的思路是這樣的:即任一偶數(自然數)可以寫為2n,這里n是一個自然數,2n可以表示為n個不同形式的一對自然數之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在篩去不適合哥德巴赫猜想結論的所有那些自然數對之後(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j= 2,3,…;等等),如果能夠證明至少還有一對自然數未被篩去,例如記其中的一對為p1和p2,那麼p1和p2都是質數,即得n=p1+p2,這樣哥德巴赫猜想就被證明了。前一部分的敘述是很自然的想法。關鍵就是要證明'至少還有一對自然數未被篩去'。目前世界上誰都未能對這一部分加以證明。要能證明,這個猜想也就解決了。
然而,因大偶數n(不小於6)等於其對應的奇數數列(首為3,尾為n-3)首尾挨次搭配相加的奇數之和。故根據該奇數之和以相關類型質數+質數(1+1)或質數+合數(1+2)(含合數+質數2+1或合數+合數2+2)(註:1+2 或 2+1 同屬質數+合數類型)在參與無限次的"類別組合"時,所有可發生的種種有關聯系即1+1或1+2完全一致的出現,1+1與1+2的交叉出現(不完全一致的出現),同2+1或2+2的"完全一致",2+1與2+2的"不完全一致"等情況的排列組合所形成的各有關聯系,就可導出的"類別組合"為1+1,1+1 與1+2和2+2,1+1與1+2,1+2與2+2,1+1與2+2,1+2等六種方式。因為其中的1+2與2+2,1+2 兩種"類別組合"方式不含1+1。所以1+1沒有覆蓋所有可形成的"類別組合"方式,即其存在是有交替的,至此,若可將1+2與2+2,以及1+2兩種方式的存在排除,則1+1得證,反之,則1+1不成立得證。然而事實卻是:1+2 與2+2,以及1+2(或至少有一種)是陳氏定理中(任何一個充分大的偶數都可以表示為兩個素數的和,或一個素數與兩個素數乘積的和),所揭示的某些規律(如1+2的存在而同時有1+1缺失的情況)存在的基礎根據。所以1+2與2+2,以及1+2(或至少有一種)"類別組合"方式是確定的,客觀的,也即是不可排除的。所以1+1成立是不可能的。這就徹底論證了布朗篩法不能證"1+1"。
由於素數本身的分布呈現無序性的變化,素數對的變化同偶數值的增長二者之間不存在簡單正比例關系,偶數值增大時素數對值忽高忽低。能通過數學關系式把素數對的變化同偶數的變化聯系起來嗎?不能!偶數值與其素數對值之間的關系沒有數量規律可循。二百多年來,人們的努力證明了這一點,最後選擇放棄,另找途徑。於是出現了用別的方法來證明哥德巴赫猜想的人們,他們的努力,只使數學的某些領域得到進步,而對哥德巴赫猜想證明沒有一點作用。
哥德巴赫猜想本質是一個偶數與其素數對關系,表達一個偶數與其素數對關系的數學表達式,是不存在的。它可以從實踐上證實,但邏輯上無法解決個別偶數與全部偶數的矛盾。個別如何等於一般呢?個別和一般在質上同一,量上對立。矛盾永遠存在。哥德巴赫猜想是永遠無法從理論上,邏輯上證明的數學結論。
【哥德巴赫猜想意義】
[編輯本段]
「用當代語言來敘述,哥德巴赫猜想有兩個內容,第一部分叫做奇數的猜想,第二部分叫做偶數的猜想。奇數的猜想指出,任何一個大於等於7的奇數都是三個素數的和。偶數的猜想是說,大於等於4的偶數一定是兩個素數的和。」(引自《哥德巴赫猜想與潘承洞》)
關於哥德巴赫猜想的難度我就不想再說什麼了,我要說一下為什麼現代數學界對哥德巴赫猜想的興趣不大,以及為什麼中國有很多所謂的民間數學家對哥德巴赫猜想研究興趣很大。
事實上,在1900年,偉大的數學家希爾伯特在世界數學家大會上作了一篇報告,提出了23個挑戰性的問題。哥德巴赫猜想是第八個問題的一個子問題,這個問題還包含了黎曼猜想和孿生素數猜想。現代數學界中普遍認為最有價值的是廣義黎曼猜想,若黎曼猜想成立,很多問題就都有了答案,而哥德巴赫猜想和孿生素數猜想相對來說比較孤立,若單純的解決了這兩個問題,對其他問題的解決意義不是很大。所以數學家傾向於在解決其它的更有價值的問題的同時,發現一些新的理論或新的工具,「順便」解決哥德巴赫猜想。
例如:一個很有意義的問題是:素數的公式。若這個問題解決,關於素數的問題應該說就不是什麼問題了。
為什麼民間數學家們如此醉心於哥猜,而不關心黎曼猜想之類的更有意義的問題呢?
一個重要的原因就是,黎曼猜想對於沒有學過數學的人來說,想讀明白是什麼意思都很困難。而哥德巴赫猜想對於小學生來說都能讀懂。
數學界普遍認為,這兩個問題的難度不相上下。
民間數學家解決哥德巴赫猜想大多是在用初等數學來解決問題,一般認為,初等數學無法解決哥德巴赫猜想。退一步講,即使那天有一個牛人,在初等數學框架下解決了哥德巴赫猜想,有什麼意義呢?這樣解決,恐怕和做了一道數學課的習題的意義差不多了。
當年柏努力兄弟向數學界提出挑戰,提出了最速降線的問題。牛頓用非凡的微積分技巧解出了最速降線方程,約翰·柏努力用光學的辦法巧妙的也解出最速降線方程,雅克布·柏努力用比較麻煩的辦法解決了這個問題。雖然雅克布的方法最復雜,但是在他的方法上發展出了解決這類問題的普遍辦法——變分法。現在來看,雅克布的方法是最有意義和價值的。
同樣,當年希爾伯特曾經宣稱自己解決了費爾馬大定理,但卻不公布自己的方法。別人問他為什麼,他回答說:「這是一隻下金蛋的雞,我為什麼要殺掉它?」的確,在解決費爾馬大定理的歷程中,很多有用的數學工具得到了進一步發展,如橢圓曲線、模形式等。
所以,現代數學界在努力的研究新的工具,新的方法,期待著哥德巴赫猜想這個「下金蛋的雞」能夠催生出更多的理論。