打磚塊演算法
『壹』 200分求動態規劃詳解!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
嗯···我學動歸不是很久,同樣是迷惘過,估計兩個月前剛剛開竅……
你看他寫的什麼無後效性什麼最優子結構的就頭大,我也頭大%…………
動態規劃一般解決兩類問題,一類是最優化問題,就是問你最大價值最小數什麼的,另一類是方案總數畢舉問題。
細分的話類型很多,
我見得多的(我是高二學生,目前在籌備NOIP)
(你那題多我就只說名字了)
背包,樓上連9講都放上來了我就不多說了……
最長不上升不下降子序列問題(比如說潘帕斯雄鷹生日模擬賽的飛翔,就是很經典的不下降的變形)
資源分配問題(比如說櫥窗布置,馬棚問題,機器分配問題)
區間動歸(乘積最大,能量項鏈等等)
最長公共子序列問題(有個遺傳編碼好像);
解決方案樹的比如說爬樓梯問題……………………
動態規劃的類型很多很多,因為他很靈活的,我們老師曾經給我們找了100個DP方程,但是那都沒有用,強記根本記不住,關鍵是理解。
深入一點的就有DP的優化,時間空間的降維(就是用別的方法去做,或者比如說背包本來是二維的空間優化過該成一維的了),樹形DP(這個我也不會)。
(優化裡面有個很經典的題《過河》)
我對DP是屬於那種突然就開了竅的……別看說「動態規劃」什麼的唬人,其實就是一個比較一個計算,知道他干什麼了題上來就有頭緒,方程啊思想啊就有了……
主要也是多看題吧,從簡單的開始,理解他的思想……自己寫動歸的時候注意下面幾個問題:
1、大前提是確定你做的是動歸題……看得多了也就知道自己面對的是什麼類型的題了
2、次前提是想法要對(我做題的時候先想這道題時間空間的維度,然後根據這個去想方程),方程正確,
實在想不起來可以先看題解,去理解人家的思想之後,不要看標程把程序做出來……
3、注意數組不要開的過小,一般都是左右都開大一點,比如他的數據范圍是1~100 ,數組就開0~101.這個是防越界的,因為很多DP賦初值的時候會用到F[0],F[0,0]
4、初始值要正確,因為很多DP其他地方都是正確的因為初始值賦錯了而全部過不了的情況是很常見的……(比如說USACO裡面的貨幣系統)
5、DP循環灶冊的范圍要正確,一般根據題來判斷范圍寫多少的(比如說櫥窗問題,今天下午寫這個題因為循環寫錯了一直AC不了)
USACO里也有很多DP題,可以做……
以上全部手打,希望能對你有所幫助。
我也是正在學習的人,上面的東西不一定全部正確,但是對我而言很受用,也算是我的經驗了。希望日後能一起學習交流外加進步嘍
QQ:340131980
1. 資源問題1
-----機器分配問題
F[I,j]:=max(f[i-1,k]+w[i,j-k])
2. 資源問題2
------01背包問題
F[I,j]:=max(f[i-1,j-v]+w,f[i-1,j]);
3. 線性動態規劃1
-----樸素最長非降子序列
F:=max{f[j]+1}
4. 剖分問題1
-----石子合並
F[i,j]:=min(f[i,k]+f[k+1,j]+sum[i,j]);
5. 剖分問題2
-----多邊形剖分
F[I,j]:=min(f[i,k]+f[k,j]+a[k]*a[j]*a);
6. 剖分問題3
------乘積最大
f[i,j]:=max(f[k,j-1]*mult[k,i]);
7. 資源問題3
-----系統可隱數宏靠性(完全背包)
F[i,j]:=max{f[i-1,j-c*k]*P[I,x]}
8. 貪心的動態規劃1
-----快餐問題
F[i,j,k]:=max{f[i-1,j',k']+(T-(j-j')*p1-(k-k')*p2) div p3}
9. 貪心的動態規劃2
-----過河 f=min{{f(i-k)} (not stone)
{f(i-k)}+1} (stone); +貪心壓縮狀態
10. 剖分問題4
-----多邊形-討論的動態規劃
F[i,j]:=max{正正 f[I,k]*f[k+1,j];
負負 g[I,k]*f[k+1,j];
正負 g[I,k]*f[k+1,j];
負正 f[I,k]*g[k+1,j];} g為min
11. 樹型動態規劃1
-----加分二叉樹 (從兩側到根結點模型)
F[I,j]:=max{f[I,k-1]*f[k+1,j]+c[k]}
12. 樹型動態規劃2
-----選課 (多叉樹轉二叉樹,自頂向下模型)
F[I,j]表示以i為根節點選j門功課得到的最大學分
f[i,j]:=max{f[t.l,k]+f[t.r,j-k-1]+c}
13. 計數問題1
-----砝碼稱重
f[f[0]+1]=f[j]+k*w[j];
(1<=i<=n; 1<=j<=f[0]; 1<=k<=a;)
14. 遞推天地1
------核電站問題
f[-1]:=1; f[0]:=1;
f:=2*f[i-1]-f[i-1-m]
15. 遞推天地2
------數的劃分
f[i,j]:=f[i-j,j]+f[i-1,j-1];
16. 最大子矩陣1
-----一最大01子矩陣
f[i,j]:=min(f[i-1,j],v[i,j-1],v[i-1,j-1])+1;
ans:=maxvalue(f);
17. 判定性問題1
-----能否被4整除
g[1,0]:=true; g[1,1]:=false; g[1,2]:=false; g[1,3]:=false;
g[i,j]:=g[i-1,k] and ((k+a[i,p]) mod 4 = j)
18. 判定性問題2
-----能否被k整除
f[I,j±n mod k]:=f[i-1,j]; -k<=j<=k; 1<=i<=n
20. 線型動態規劃2
-----方塊消除游戲
f[i,i-1,0]:=0
f[i,j,k]:=max{f[i,j-1,0]+sqr(len(j)+k),
f[i,p,k+len[j]]+f[p+1,j-1,0]}
ans:=f[1,m,0]
21. 線型動態規劃3
-----最長公共子串,LCS問題
f[i,j]={0(i=0)&(j=0);
f[i-1,j-1]+1 (i>0,j>0,x=y[j]);
max{f[i,j-1]+f[i-1,j]}} (i>0,j>0,x<>y[j]);
22. 最大子矩陣2
-----最大帶權01子矩陣O(n^2*m)
枚舉行的起始,壓縮進數列,求最大欄位和,遇0則清零
23. 資源問題4
-----裝箱問題(判定性01背包)
f[j]:=(f[j] or f[j-v]);
24. 數字三角形1
-----樸素の數字三角形
f[i,j]:=max(f[i+1,j]+a[I,j],f[i+1,j+1]+a[i,j]);
25. 數字三角形2
-----晴天小豬歷險記之Hill
同一階段上暴力動態規劃
if[i,j]:=min(f[i,j-1],f[I,j+1],f[i-1,j],f[i-1,j-1])+a[i,j]
26. 雙向動態規劃1
數字三角形3
-----小胖辦證
f[i,j]:=max(f[i-1,j]+a[i,j],f[i,j-1]+a[i,j],f[i,j+1]+a[i,j])
27. 數字三角形4
-----過河卒
//邊界初始化
f[i,j]:=f[i-1,j]+f[i,j-1];
28. 數字三角形5
-----樸素的打磚塊
f[i,j,k]:=max(f[i-1,j-k,p]+sum[i,k],f[i,j,k]);
29. 數字三角形6
-----優化的打磚塊
f[I,j,k]:=max{g[i-1,j-k,k-1]+sum[I,k]}
30. 線性動態規劃3
-----打鼴鼠』
f:=f[j]+1;(abs(x-x[j])+abs(y-y[j])<=t-t[j])
31. 樹形動態規劃3
-----貪吃的九頭龍
32. 狀態壓縮動態規劃1
-----炮兵陣地
Max(f[Q*(r+1)+k],g[j]+num[k])
If (map and plan[k]=0) and
((plan[P] or plan[q]) and plan[k]=0)
33. 遞推天地3
-----情書抄寫員
f:=f[i-1]+k*f[i-2]
34. 遞推天地4
-----錯位排列
f:=(i-1)(f[i-2]+f[i-1]);
f[n]:=n*f[n-1]+(-1)^(n-2);
35. 遞推天地5
-----直線分平面最大區域數
f[n]:=f[n-1]+n
:=n*(n+1) div 2 + 1;
36. 遞推天地6
-----折線分平面最大區域數
f[n]:=(n-1)(2*n-1)+2*n;
37. 遞推天地7
-----封閉曲線分平面最大區域數
f[n]:=f[n-1]+2*(n-1)
:=sqr(n)-n+2;
38 遞推天地8
-----凸多邊形分三角形方法數
f[n]:=C(2*n-2,n-1) div n;
對於k邊形
f[k]:=C(2*k-4,k-2) div (k-1); //(k>=3)
39 遞推天地9
-----Catalan數列一般形式
1,1,2,5,14,42,132
f[n]:=C(2k,k) div (k+1);
40 遞推天地10
-----彩燈布置
排列組合中的環形染色問題
f[n]:=f[n-1]*(m-2)+f[n-2]*(m-1); (f[1]:=m; f[2]:=m(m-1);
41 線性動態規劃4
-----找數
線性掃描
sum:=f+g[j];
(if sum=Aim then getout; if sum<Aim then inc(i) else inc(j);)
42 線性動態規劃5
-----隱形的翅膀
min:=min{abs(w/w[j]-gold)};
if w/w[j]<gold then inc(i) else inc(j);
43 剖分問題5
-----最大獎勵
f:=max(f,f[j]+(sum[j]-sum)*i-t
44 最短路1
-----Floyd
f[i,j]:=max(f[i,j],f[i,k]+f[k,j]);
ans[q[i,j,k]]:=ans[q[i,j,k]]+s[i,q[i,j,k]]*s[q[i,j,k],j]/s[i,j];
45 剖分問題6
-----小H的小屋
F[l,m,n]:=f[l-x,m-1,n-k]+S(x,k);
46 計數問題2
-----隕石的秘密(排列組合中的計數問題)
Ans[l1,l2,l3,D]:=f[l1+1,l2,l3,D+1]-f[l1+1,l2,l3,D];
F[l1,l2,l3,D]:=Sigma(f[o,p,q,d-1]*f[l1-o,l2-p,l3-q,d]);
47 線性動態規劃
------合唱隊形
兩次F:=max{f[j]+1}+枚舉中央結點
48 資源問題
------明明的預算方案:加花的動態規劃
f[i,j]:=max(f[i,j],f[l,j-v-v[fb]-v[fa]]+v*p+v[fb]*p[fb]+v[fa]*p[fa]);
49 資源問題
-----化工場裝箱員
50 樹形動態規劃
-----聚會的快樂
f[i,2]:=max(f[i,0],f[i,1]);
f[i,1]:=sigma(f[t^.son,0]);
f[i,0]:=sigma(f[t^.son,3]);
51 樹形動態規劃
-----皇宮看守
f[i,2]:=max(f[i,0],f[i,1]);
f[i,1]:=sigma(f[t^.son,0]);
f[i,0]:=sigma(f[t^.son,3]);
52 遞推天地
-----盒子與球
f[i,1]:=1;
f[i,j]:=j*(f[i-1,j-1]+f[i-1,j]);
53 雙重動態規劃
-----有限的基因序列
f:=min{f[j]+1}
g[c,i,j]:=(g[a,i,j] and g[b,i,j]) or (g[c,i,j])
54 最大子矩陣問題
-----居住空間
f[i,j,k]:=min(min(min(f[i-1,j,k],f[i,j-1,k]),
min(f[i,j,k-1],f[i-1,j-1,k])),
min(min(f[i-1,j,k-1],f[i,j-1,k-1]),
f[i-1,j-1,k-1]))+1;
55 線性動態規劃
------日程安排
f:=max{f[j]}+P[I]; (e[j]<s)
56 遞推天地
------組合數
C[I,j]:=C[i-1,j]+C[I-1,j-1]
C[I,0]:=1
57 樹形動態規劃
-----有向樹k中值問題
F[I,r,k]:=max{max{f[l,I,j]+f[r,I,k-j-1]},f[f[l,r,j]+f[r,r,k-j]+w[I,r]]}
58 樹形動態規劃
-----CTSC 2001選課
F[I,j]:=w(if i∈P)+f[l,k]+f[r,m-k](0≤k≤m)(if l<>0)
59 線性動態規劃
-----多重歷史
f[i,j]:=sigma{f[i-k,j-1]}(if checked)
60 背包問題(+-1背包問題+回溯)
-----CEOI1998 Substract
f[i,j]:=f[i-1,j-a] or f[i-1,j+a]
61 線性動態規劃(字元串)
-----NOI 2000 古城之謎
f[i,1,1]:=min{f[i+length(s),2,1], f[i+length(s),1,1]+1}f[i,1,2]:=min{f[i+length(s),1,2]+words[s],f[i+length(s),1,2]+words[s]}
62 線性動態規劃
-----最少單詞個數
f[i,j]:=max{f[I,j],f[u-1,j-1]+l}
63 線型動態規劃
-----APIO2007 數據備份
狀態壓縮+剪掉每個階段j前j*2個狀態和j*2+200後的狀態貪心動態規劃
f:=min(g[i-2]+s,f[i-1]);
64 樹形動態規劃
-----APIO2007 風鈴
f:=f[l]+f[r]+{1 (if c[l]<c[r])}
g:=1(d[l]<>d[r]) 0(d[l]=d[r])
g[l]=g[r]=1 then Halt;
65 地圖動態規劃
-----NOI 2005 adv19910
F[t,i,j]:=max{f[t-1,i-dx[d[[t]],j-dy[d[k]]]+1],f[t-1,i,j];
66 地圖動態規劃
-----優化的NOI 2005 adv19910
F[k,i,j]:=max{f[k-1,i,p]+1} j-b[k]<=p<=j;
67 目標動態規劃
-----CEOI98 subtra
F[I,j]:=f[I-1,j+a] or f[i-1,j-a]
68 目標動態規劃
----- Vijos 1037搭建雙塔問題
F[value,delta]:=g[value+a,delta+a] or g[value,delta-a]
69 樹形動態規劃
-----有線電視網
f[i,p]:=max(f[i,p],f[i,p-q]+f[j,q]-map[i,j])
leaves>=p>=l, 1<=q<=p;
70 地圖動態規劃
-----vijos某題
F[I,j]:=min(f[i-1,j-1],f[I,j-1],f[i-1,j]);
71 最大子矩陣問題
-----最大欄位和問題
f:=max(f[i-1]+b,b); f[1]:=b[1]
72 最大子矩陣問題
-----最大子立方體問題
枚舉一組邊i的起始,壓縮進矩陣 B[I,j]+=a[x,I,j]
枚舉另外一組邊的其實,做最大子矩陣
73 括弧序列
-----線型動態規劃
f[I,j]:=min(f[I,j],f[i+1,j-1](ss[j]=」()」or(」[]」)),
f[I+1,j+1]+1 (s[j]=」(」or」[」 ] , f[I,j-1]+1(s[j]=」)」or」]」 )
74 棋盤切割
-----線型動態規劃
f[k,x1,y1,x2,y2]=min{min{f[k-1,x1,y1,a,y2]+s[a+1,y1,x2,y2],
f[k-1,a+1,y1,x2,y2]+s[x1,y1,a,y2]
min{}}
75 概率動態規劃
-----聰聰和可可(NOI2005)
x:=p[p[i,j],j]
f[I,j]:=(f[x,b[j,k]]+f[x,j])/(l[j]+1)+1
f[I,i]=0
f[x,j]=1
76 概率動態規劃
-----血緣關系
F[A, B]=(f[A0, B]+P[A1, B])/2
f[I,i]=1
f[I,j]=0(I,j無相同基因)
77 線性動態規劃
-----決斗
F[I,j]=(f[I,j] and f[k,j]) and (e[I,k] or e[j,k]),i<k<j
78 線性動態規劃
-----舞蹈家
F[x,y,k]=min(f[a[k],y,k+1]+w[x,a[k]],f[x,a[k],k+1]+w[y,a[k]])
79 線性動態規劃
-----積木游戲
F[I,a,b,k]=max(f[I,a+1,b,k],f[i+1,a+1,a+1,k』],f[I,a+1,a+1,k』])
80 樹形動態規劃(雙次記錄)
-----NOI2003 逃學的小孩
樸素的話枚舉節點i和離其最遠的兩個節點 j,k O(n^2)
每個節點記錄最大的兩個值,並記錄這最大值分別是從哪個相鄰節點傳過來的。當遍歷到某個孩子節點的時候,只需檢查最大值是否是從該孩子節點傳遞來的。如果是,就取次大,否則取最大值
81 樹形動態規劃(完全二叉樹)
-----NOI2006 網路收費
F[I,j,k]表示在點i所管轄的所有用戶中,有j個用戶為A,在I的每個祖先u上,如果N[a]>N則標0否則標1,用二進制狀態壓縮進k中,在這種情況下的最小花費
F[I,j,k]:=min{f[l,u,k and (s<<(i-1))]+w1,f[r,j-u,k and(s<<(i-1))]}
82 樹形動態規劃
-----IOI2005 河流
F:=max
83 記憶化搜索
-----Vijos某題,忘了
F[pre,h,m]:=sigma{SDP(I,h+1,M+i)} (pre<=i<=M+1)
84 狀態壓縮動態規劃
-----APIO 2007 動物園
f[I,k]:=f[i-1,k and not (1<<4)] + NewAddVal
85 樹形動態規劃
-----訪問術館
f[i,j-c×2]:= max ( f[l,k], f[r,j-c×2-k] )
86 字元串動態規劃
-----Ural 1002 Phone
if exist((s,j,i-j)) then f:=min(f,f[j]+1);
87 多進程動態規劃
-----CEOI 2005 service
Min( f[i,j,k], f[i-1,j,k] + c[t[i-1],t] )
Min( f[i,t[i-1],k], f[i-1,j,k] + c[j,t] )
Min( f[i,j,t[i-1]], f[i-1,j,k] + c[k,t] )
88 多進程動態規劃
-----Vijos1143 三取方格數
max(f[i,j,k,l],f[i-1,j-R[m,1],k-R[m,2],l-R[m,3]]);
if (j=k) and (k=l) then inc(f[i,j,k,l],a[j,i-j]) else
if (j=k) then inc(f[i,j,k,l],a[j,i-j]+a[l,i-l]) else
if (k=l) then inc(f[i,j,k,l],a[j,i-j]+a[k,i-k]) else
if (j=l) then inc(f[i,j,k,l],a[j,i-j]+a[k,i-k]) else
inc(f[i,j,k,l],a[j,i-j]+a[k,i-k]+a[l,i-l]);
89 線型動態規劃
-----IOI 2000 郵局問題
f[i,j]:=min(f[I,j],f[k,j-1]+d[k+1,i]);
90 線型動態規劃
-----Vijos 1198 最佳課題選擇
if j-k>=0 then Min(f[i,j],f[i-1,j-k]+time(i,k));
91 背包問題
----- USACO Raucous Rockers
多個背包,不可以重復放物品,但放物品的順序有限制。
F[I,j,k]表示決策到第i個物品、第j個背包,此背包花費了k的空間。
f[I,j,k]:=max(f[I-1,j,k],f[I-1,j,k-t]+p,f[i-1,j-1,maxtime-t])
92 多進程動態規劃
-----巡遊加拿大(IOI95、USACO)
d[i,j]=max{d[k,j]+1(a[k,i] & j<k<i),d[j,k]+1(a[I,j] & (k<j))}。
f[i,j]表示從起點出發,一個人到達i,另一個人到達j時經過的城市數。d[i,j]=d[j,i],所以我們限制i>j
分析狀態(i,j),它可能是(k,j)(j<k<i)中k到達i得到(方式1),也可能是(j,k)(k<j)中k超過j到達i得到(方式2)。但它不能是(i,k)(k<j)中k到達j得到,因為這樣可能會出現重復路徑。即使不會出現重復路徑,那麼它由(j,k)通過方式2同樣可以得到,所以不會遺漏解 時間復雜度O(n3)
93 動態規劃
-----ZOJ cheese
f[i,j]:=f[i-kk*zl[u,1],j-kk*zl[u,2]]+a[i-kk*zl[u,1],j-kk*zl[u,2]]
94 動態規劃
-----NOI 2004 berry 線性
F[I,1]:=s
F[I,j]:=max{min{s-s[l-1]},f[l-1,j-1]} (2≤j≤k, j≤l≤i)
95 動態規劃
-----NOI 2004 berry 完全無向圖
F[I,j]:=f[i-1,j] or (j≥w) and (f[i-1,j-w])
96 動態規劃
-----石子合並 四邊形不等式優化
m[i,j]=max{m[i+1,j], m[i,j-1]}+t[i,j]
97 動態規劃
-----CEOI 2005 service
(k≥long,i≥1)g[i, j, k]=max{g[i-1,j,k-long]+1,g[i-1,j,k]}
(k<long,i≥1) g[i, j, k]=max{g[i-1,j-1,t-long]+1,g[i-1,j,k]}
(0≤j≤m, 0≤k<t) g[0,j,k]=0;
ans:=g[n,m,0]。
狀態優化:g[i, j]=min{g[i-1,j],g[i-1,j-1]+long}
其中(a, b)+long=(a』, b』)的計算方法為:
當b+long ≤t時: a』=a; b』=b+long;
當b+long >t時: a』=a+1; b』=long;
規劃的邊界條件:
當0≤i≤n時,g[i,0]=(0,0)
98 動態規劃
-----AHOI 2006寶庫通道
f[k]:=max{f[k-1]+x[k,j]-x[k,i-1], x[k,j]-x[k,i-1]}
99 動態規劃
-----Travel
A) 費用最少的旅行計劃。
設f表示從起點到第i個旅店住宿一天的最小費用;g表示從起點到第i個旅店住宿一天,在滿足最小費用的前提下所需要的最少天數。那麼:
f=f[x]+v, g=g[x]+1
x滿足:
1、 x<i,且d – d[x] <= 800(一天的最大行程)。
2、 對於所有的t < i, d – d[t] <= 800,都必須滿足:
A. g[x] < g[t](f[x] = f[t]時) B. f[x] < f[t] (其他情況)
f[0] = 0,g[0] = 0。 Ans:=f[n + 1],g[n+1]。
B). 天數最少的旅行計劃。
方法其實和第一問十分類似。
設g』表示從起點到第i個旅店住宿一天的最少天數;f』表示從起點到第i個旅店住宿一天,在滿足最小天數前提下所需要的最少費用。那麼:
g』 = g』[x] + 1, f』 = f』[x] + v
x滿足:
1、 x<i,且d – d[x] <= 800(一天的最大行程)。
2、 對於所有的t < i, d – d[t] <= 800,都必須滿足:
f』[x] < f』[t] g』[x] = g』[t]時
g』[x] < g』[t] 其他情況
f』[0] = 0,g』[0] = 0。 Ans:=f』[n + 1],g』[n+1]。
100 動態規劃
-----NOI 2007 cash
y:=f[j]/(a[j]*c[j]+b[j]);
g:=c[j]*y*a+y*b;
f:=max(f,g)
『貳』 會一點java,有面向對象編程基礎,選擇入門unity有很大難度嗎應如何有效的入門
你可以對照著我們的課程大綱看一下自己的能力
C#語言
數據類型,常量,變數,運算符和表達式及命名規則
輸入輸出方法,數據類型轉換
分支結構,循環,關系運算符,邏輯運算符
一維數組與foreach循環,冒泡排序與二維數組
枚舉與結構體定義、結構體成員及訪問
面向對象編程 類和面向對象概念,對象的欄位成員
對象中的方法成員,方法類型詳解
對象中的屬性和方法參數
string字元串對象、裝箱和拆箱、方法的重載和遞歸
構造和析構函數
抽象方法、虛方法,多態實現
靜抽象類,靜態類和單例設計模式
介面和泛型
集合、委託 介面介紹,介面實現多態
泛型方法、泛型類、泛型約束
ArrayList、List、Queue(隊列)
Stack(堆棧)、Hashtable (哈希表)、Dictionary(字典)
委託與事件、C#反射類、實現範例的Observer設計模式
實戰項目及階段考核 2048、隨機抽獎系統、圖書管理系統、乒乓球大對決
題庫中隨機抽題,包含筆試題、上機題,學生需在規定時間內作答
Unity引擎
開發基礎 Unity面板及基本操作
游戲對象的操作
預制體的創建和使用
3D基礎理論
面向組件開發 Unity工程結構
Unity開發框架
面向組件的開發思想
腳本組件及生命周期、回調方法的概念
常用類(Transform、GameObject、Vector3、
Quaternion、Time、Mathf、Resources資源載入)
物理系統 輸入控制、Input類,輸入配置
碰撞器--Collider組件家族
剛體組件與力--Rigidbody組件
剛體組件與力--Rigidbody組件、碰撞條件及回調方法
物理材質、射線、發射方法及重載、角色控制器
實戰項目 打飛機、坦克大戰、HelixJump、運轉銀河系、打磚塊、接金幣
2D精靈和UI Sprite精靈,圖集的切割、打包,計算機2D圖形學基礎
2D物理組件(剛體、碰撞器)
2D動畫創建--初識Animation
2D開發常用類,碰撞、觸發回調
TimeLine製作劇情
UGUI初級 畫布Canvas初識
UV坐標,UI坐標
基本控制項、復合控制項
UGUI的布局和適配方案
UGUI高級 Canvas的渲染模式、適配模式介紹
水平布局、垂直布局、網格布局組件
ScrollView效果製作、Toggle分頁、QQ聊天窗口
UI多種交互方式、事件回調
UGUI案例 MVC設計模式,小地圖製作、方位坐標、背包、關卡選擇案例
實戰項目 捕魚達人、夢幻西遊、超級瑪麗、消消樂
動畫系統 模型資源分析
動畫類型,Avatar系統
動畫節點、動畫狀態機
原畫UV展開;人形動畫代碼控制,角色控制器綜合應用
動畫系統高級 動畫遮罩;
IK動畫;
動畫事件;
動畫曲線
unity高級
數據持久化 PlayerPrefs、Sqlite
XML、JSON、CSV文檔讀取、Excel加密存取
WWW類和協程 協程、線程和進程的概念
協程的設計思想及使用
WWW類,封裝請求工具類
Http協議簡介(Get、Post)
資源載入 AssetBundle資源打包及依賴分析
基於WWW類遠程資源獲取
使用AssetBundle進行資源載入及內存管理
性能優化 針對CPU、GPU、內存、美術資源的優化方案
對象池技術
FSM 設計模式
FSM案例人物控制
FSM案例-Buffer系統
FSM案例-AI系統
行為樹 游戲AI方案對比,最優解問題分析;
BehaviorDesigner插件,代碼控制
我這有一個Unity學習交流,裡面有大神也有小白,可以在群里甩問題啊,而且不定期分享學習資料 q.u.n.[887.207.898]q.u.n.備註:小白
A*演算法 理解AStar演算法原理;
代碼實現AStar演算法
Shader 圖形學初探,基礎知識;
固定管線著色器;
頂面著色器和表面著色器;
Shader案例
網路 Unet、HLAPI詳解,網路版CS射擊;
基於ASP.net的web站點搭建;
SqlServer資料庫的接入和訪問;
基於Post請求的數據通信;
Socket編程基礎、制定協議、Socket通信、數據安全
實戰項目
及階段考核 陰陽師、鎮魔曲、荒野行動、泡泡堂
題庫中隨機抽題,包含筆試題、上機題,學生需在規定時間內作答
VR、AR
VR-HTC Vive SteamVR SDK接入及分析
SteamVR 預制體和案例分析
手柄、頭部Transform獲取,點擊事件獲取
3D UI交互
射箭、魔法陣繪制、釣線瞬移
性能優化,降低眩暈策略
AR--高通SDK AAR介紹及AR項目展示、常用SDK介紹
Vuforia賬號注冊、識別圖的上傳與製作、數據包的下載及使用
手機觸屏、陀螺儀與發布的講解
項目架構與
項目管理 模塊封裝原理與規范,通用框架搭建,模塊封裝,消息中心、模塊管理器、通信模塊、編輯器擴展工具編寫
熱更新模塊(資源熱更、邏輯熱更)、LuaUI架構、LuaSocket架構、Lua資料庫架構、AssetBundle管理規則、AssetBundle自動打包
團隊合作工具--SVN
綜合項目 學生以小組為單位,組員分工,合作完成至少一個項目,包含但不限於:
RPG角色扮演游戲、ACT動作游戲、AVG冒險游戲、SLG策略游戲、FPS第一人稱射擊游戲、PZL益智類游戲、MSC音樂游戲、虛擬模擬、VR展示、AR游戲; 項目答辯:學員對本團隊的項目進行講解,講師進行考核,模擬企業中技術面試環節對項目進行答辯
項目答辯
及評審 對於完成的項目分組進行答辯,按照功能實現、代碼規范、以及完成度等進行打分
『叄』 【轉載】AlphaGo原理解析
這些天都在沒日沒夜地關注一個話題,谷歌人工智慧程序AlphaGo(國內網友親切地稱為「阿爾法狗」)以5:0擊敗歐洲職業圍棋冠軍樊麾二段,並在和世界冠軍的比賽中2:0領先。
什麼!!
19年前計算機擊敗國際象棋冠軍卡斯帕羅夫的情景還歷歷在目,現在計算機又要來攻克圍棋了嗎!?
虛竹在天龍八部里自填一子,無意中以「自殺」破解「珍籠」棋局,逍遙子方才親傳掌門之位。難道以後「阿爾法狗」要出任逍遙派掌門了?
1933年,東渡日本19歲的吳清源迎戰當時的日本棋壇霸主、已經60歲的本因坊秀哉,開局三招即是日本人從未見過的三三、星、天元布陣,快速進擊逼得對方連連暫停「打卦」和弟子商量應對之策。隨後以「新布局」開創棋壇新紀元。難道阿爾法狗會再造一個「新新布局」?
作為一個關心人工智慧和人類命運的理科生,近些天刷了好些報道,記者們說「阿爾法狗是個『價值神經網路』和『策略神經網』絡綜合蒙特卡洛搜索樹的程序」,但我覺得光知道這些概念是不夠的。我想看看「阿爾法狗」的廬山真面目。
准備好棋盤和腦容量,一起來探索吧?
圍棋棋盤是19x19路,所以一共是361個交叉點,每個交叉點有三種狀態,可以用1表示黑子,-1表示白字,0表示無子,考慮到每個位置還可能有落子的時間、這個位置的氣等其他信息,我們可以用一個361 * n維的向量來表示一個棋盤的狀態。我們把一個棋盤狀態向量記為s。
當狀態s下,我們暫時不考慮無法落子的地方,可供下一步落子的空間也是361個。我們把下一步的落子的行動也用361維的向量來表示,記為a。
這樣,設計一個圍棋人工智慧的程序,就轉換成為了,任意給定一個s狀態,尋找最好的應對策略a,讓你的程序按照這個策略走,最後獲得棋盤上最大的地盤。
如果你想要設計一個特別牛逼驚世駭俗的圍棋程序,你會從哪裡開始呢?對於在谷歌DeepMind工作的黃士傑和他的小夥伴而言,第一招是:
蒙特卡洛搜索樹(Monte-Carlo Tree Search)是一種「大智若愚」的方法。面對一個空白棋盤S0,黃士傑的老師Coulum最初對圍棋一無所知,便假設所有落子方法分值都相等,設為1。然後扔了一個骰子,從361種落子方法中隨機選擇一個走法a0。Coulum想像自己落子之後,棋盤狀態變成S1,然後繼續假設對手也和自己一樣二逼,對方也扔了一個篩子,隨便瞎走了一步,這時棋盤狀態變成S2,於是這兩個二逼青年一直扔骰子下棋,一路走到Sn,最後肯定也能分出一個勝負r,贏了就r記為1,輸了則為0,假設這第一次r=1。這樣Coulum便算是在心中模擬了完整的一盤圍棋。
Coulum心想,這樣隨機扔骰子也能贏?運氣不錯啊,那把剛才那個落子方法(S0,a0)記下來,分值提高一些:
我剛才從(S0, a0)開始模擬贏了一次,r=1,那麼新分數=2,除了第一步,後面幾步運氣也不錯,那我把這些隨機出的局面所對應落子方法(Si,ai)的分數都設為2吧。然後Coulum開始做第二次模擬,這次扔骰子的時候Coulum對圍棋已經不是一無所知了,但也知道的不是太多,所以這次除(S0, a0)的分值是2之外,其他落子方法的分數還是1。再次選擇a0的概率要比其他方法高一點點。
那位假想中的二逼對手也用同樣的方法更新了自己的新分數,他會選擇一個a1作為應對。如法炮製,Coulum又和想像中的對手又下了一盤稍微不那麼二逼的棋,結果他又贏了,Coulum於是繼續調整他的模擬路徑上相應的分數,把它們都+1。隨著想像中的棋局下得越來越多,那些看起來不錯的落子方案的分數就會越來越高,而這些落子方案越是有前途,就會被更多的選中進行推演,於是最有「前途」的落子方法就會「涌現」出來。
最後,Coulum在想像中下完10萬盤棋之後,選擇他推演過次數最多的那個方案落子,而這時,Coulum才真正下了第一步棋。
蒙特卡洛搜索樹華麗轉身為相當深刻的方法,可以看到它有兩個很有意思的特點:
1)沒有任何人工的feature,完全依靠規則本身,通過不斷想像自對弈來提高能力。這和深藍戰勝卡斯帕羅夫完全不同,深藍包含了很多人工設計的規則。MCTS靠的是一種類似遺傳演算法的自我進化,讓靠譜的方法自我涌現出來。讓我想起了卡爾文在《大腦如何思維》中說的思維的達爾文主義[6]。
2)MCTS可以連續運行,在對手思考對策的同時自己也可以思考對策。Coulum下完第一步之後,完全不必要停下,可以繼續進行想像中的對弈,直到對手落子。Coulum隨後從對手落子之後的狀態開始計算,但是之前的想像中的對弈完全可以保留,因為對手的落子完全可能出現在之前想像中的對弈中,所以之前的計算是有用的。這就像人在進行對弈的時候,可以不斷思考,不會因為等待對手行動而中斷。這一點Coulum的程序非常像人,酷斃了。
但黃士傑很快意識到他老師的程序仍然有局限:初始策略太簡單。我們需要更高效地扔骰子。
如何更高效的扔骰子呢?
用P_human()來扔。
如果某一步被隨機到很多次,就應該主要依據模擬得到的概率而非P_human。
所以P_human的初始分會被打個折扣:
這樣就既可以用P_human快速定位比較好的落子方案,又給了其他位置一定的概率。看起來很美,然後實際操作中卻發現:「然並卵」。因為,P_human()計算太慢了。
一次P_human()計算需要3ms,相對於原來隨機扔骰子不到1us,慢了3000倍。如果不能快速模擬對局,就找不到妙招,棋力就不能提高。所以,黃士傑訓練了一個簡化版的P_human_fast(),把神經網路層數、輸入特徵都減少,耗時下降到了2us,基本滿足了要求。先以P_human()來開局,走前面大概20多步,後面再使用P_human_fast()快速走到最後。兼顧了准確度和效率。
這樣便綜合了深度神經網路和MCTS兩種方案,此時黃士傑的圍棋程序已經可以戰勝所有其他電腦,雖然距離人類職業選手仍有不小的差距,但他在2015年那篇論文的最後部分信心滿滿的表示:「我們圍棋軟體所使用的神經網路和蒙特卡洛方法都可以隨著訓練集的增長和計算力的加強(比如增加CPU數)而同步增強,我們正前進在正確的道路上。」
看樣子,下一步的突破很快就將到來。同年2月,黃士傑在Deepmind的同事在頂級學術期刊nature上發表了「用神經網路打游戲」的文章[2]。這篇神作,為進一步提高MCTS的棋力,指明了前進的新方向:
紅白機很多人小時候都玩過,你能都打通嗎?黃士傑的同事通過「強化學習」方法訓練的程序在類似紅白機的游戲機上打通了200多個游戲,大多數得分都比人類還好。
「強化學習」是一類機器學習方法,Agent通過和環境s的交互,選擇下一步的動作a,這個動作會影響環境s,給Agent一個reward,Agent然後繼續和環境交互。游戲結束的時候,Agent得到一個最後總分r。這時我們把之前的環境狀態s、動作a匹配起來就得到了一系列<s,a>,設定目標為最後的總得分r,我們可以訓練一個神經網路去擬合在狀態s下,做動作a的總得分。下一次玩游戲的時候,我們就可以根據當前狀態s,去選擇最後總得分最大的動作a。通過不斷玩游戲,我們對<s,a>下總得分的估計就會越來越准確,游戲也玩兒得越來越好。
打磚塊游戲有一個秘訣:把球打到牆的後面去,球就會自己反彈得分。強化學習的程序在玩了600盤以後,學到這個秘訣:球快要把牆打穿的時候評價函數v的分值就會急劇上升。
機器學習的開山鼻祖Samuel早在1967年就用自對弈的方法來學習國際跳棋[7],而之前的蒙特卡洛搜索樹也是一個自對弈的過程。但是現在黃士傑不僅有一個從人類對弈中學習出的P_human這樣一個高起點,而且有一個神經網路可以從對弈樣本中學習,有理由相信這次會有更好的結果。
黃士傑准備在MCTS框架之上融合局面評估函數v()。這次還是用P_human作為初始分開局,每局選擇分數最高的方案落子,下到第L步之後,改用P_human_fast把剩下的棋局走完,同時調用v(SL),評估局面的獲勝概率。然後按照如下規則更新整個樹的分數:
前兩項和原來一樣,如果待更新的節點就是葉子節點,那局面評估分就是v(SL)。如果是待更新的節點是上級節點,局面評估分是該節點所有葉子節點v()的平均值。
如果v()表示大局觀,「P_human_fast模擬對局」表示快速驗算,那麼上面的方法就是大局觀和快速模擬驗算並重。如果你不服,非要做一個0.5: 0.5之外的權重,黃士傑團隊已經實驗了目前的程序對陣其他權重有95%的勝率。
以上,便是阿爾法狗的廬山真面目。
上圖演示了阿爾法狗和樊麾對弈時的計算過程,阿爾法狗執黑,紅圈是阿爾法狗實際落子的地方。1、2、3和後面的數字表示他想像中的之後雙方下一步落子的地方。白色方框是樊麾的實際落子。在復盤時,樊麾覺得位置1的走法更好。
深度學習、蒙特卡洛搜索樹,自我進化三招齊出,所有其他圍棋ai都毫無還手之力。99%的勝率不說,「阿爾法狗」還可以在讓四子的情況下以77%的勝率擊敗crazystone。「阿爾法狗」利用超過170個GPU,粗略估算超過800萬核並行計算,不僅有前期訓練過程中模仿人類,自我對弈不斷進化,還有實戰時的模擬對局可以實時進化,已經把現有方法發揮到了極限,是目前人工智慧領域絕對的巔峰之作。
圍棋是NP-hard問題,如果用一個原子來存儲圍棋可能的狀態,把全宇宙的原子加起來都不夠儲存所有的狀態。於是我們把這樣的問題轉換為尋找一個函數P,當狀態為S時,計算最優的落子方案a = P(s)。我們看到,無論是「狂拽酷炫」的深度學習,還是「大智若愚」的MCTS,都是對P(s)的越來越精確的估計,但即使引入了「左右互搏」來強化學習,黃士傑和團隊仍然做了大量的細節工作。所以只有一步一個腳印,面對挑戰不斷拆解,用耐心與細心,還有辛勤的汗水,才能取得一點又一點的進步,而這些進步積累在一起,終於讓計算機達到並超過了人類職業選手的水平。