經典實用演算法
A. 帶你了解數據挖掘中的經典演算法
數據挖掘的演算法有很多,而不同的演算法有著不同的優點,同時也發揮著不同的作用。可以這么說,演算法在數據挖掘中做出了極大的貢獻,如果我們要了解數據挖掘的話就不得不了解這些演算法,下面我們就繼續給大家介紹一下有關數據挖掘的演算法知識。
1.The Apriori algorithm,
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。這個演算法是比較復雜的,但也是十分實用的。
2.最大期望演算法
在統計計算中,最大期望演算法是在概率模型中尋找參數最大似然估計的演算法,其中概率模型依賴於無法觀測的隱藏變數。最大期望經常用在機器學習和計算機視覺的數據集聚領域。而最大期望演算法在數據挖掘以及統計中都是十分常見的。
3.PageRank演算法
PageRank是Google演算法的重要內容。PageRank里的page不是指網頁,而是創始人的名字,即這個等級方法是以佩奇來命名的。PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票,被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」,這個標准就是衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。
3.AdaBoost演算法
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器,然後把這些弱分類器集合起來,構成一個更強的最終分類器。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。這種演算法給數據挖掘工作解決了不少的問題。
數據挖掘演算法有很多,這篇文章中我們給大家介紹的演算法都是十分經典的演算法,相信大家一定可以從中得到有價值的信息。需要告訴大家的是,我們在進行數據挖掘工作之前一定要事先掌握好數據挖掘需呀掌握的各類演算法,這樣我們才能在工總中得心應手,如果基礎不牢固,那麼我們遲早是會被淘汰的。職場如戰場,我們一定要全力以赴。
B. 除了經典和常用的排序演算法外,還有哪些奇葩而有趣的排序演算法
排序演算法有:
冒泡排序(bubble sort) — O(n^2)
雞尾酒排序(Cocktail sort,雙向的冒泡排序) — O(n^2)
插入排序(insertion sort)— O(n^2)
桶排序(bucket sort)— O(n); 需要 O(k) 額外空間
計數排序(counting sort) — O(n+k); 需要 O(n+k) 額外空間
合並排序(merge sort)— O(nlog n); 需要 O(n) 額外空間
原地合並排序— O(n^2)
二叉排序樹排序 (Binary tree sort) — O(nlog n)期望時間; O(n^2)最壞時間; 需要 O(n) 額外空間
鴿巢排序(Pigeonhole sort) — O(n+k); 需要 O(k) 額外空間
基數排序(radix sort)— O(n·k); 需要 O(n) 額外空間
Gnome 排序— O(n^2)
圖書館排序— O(nlog n) with high probability,需要 (1+ε)n額外空間
不穩定的
選擇排序(selection sort)— O(n^2)
希爾排序(shell sort)— O(nlog n) 如果使用最佳的現在版本
組合排序— O(nlog n)
堆排序(heapsort)— O(nlog n)
平滑排序— O(nlog n)
快速排序(quicksort)— O(nlog n) 期望時間,O(n^2) 最壞情況; 對於大的、亂數列表一般相信是最快的已知排序
Introsort— O(nlog n)
Patience sorting— O(nlog n+ k) 最壞情況時間,需要 額外的 O(n+ k) 空間,也需要找到最長的遞增子串列(longest increasing subsequence)
不實用的
Bogo排序— O(n× n!) 期望時間,無窮的最壞情況。
Stupid sort— O(n^3); 遞歸版本需要 O(n^2) 額外存儲器
珠排序(Bead sort) — O(n) or O(√n),但需要特別的硬體
Pancake sorting— O(n),但需要特別的硬體
stooge sort——O(n^2.7)很漂亮但是很耗時