遺傳演算法包含
❶ 遺傳演算法屬於數學優化理論嗎
遺傳演算法 (Genetic Algorithm, GA) 是一種基於遺傳學原理的優化演算法。它是一種模擬自然界中生物進化過程的演算法。遺傳算則纖法通過模擬遺傳進化的過程來解決優化問題,是一種進化塌棗演算法。
遺傳演算法屬於數學優化理論的范疇, 數學優團盯拆化理論主要研究的是從數學的角度對優化問題進行研究的理論,包括非線性規劃,凸優化,線性規劃等。遺傳演算法就是這一理論的一個重要的分支。
❷ 請問什麼是遺傳演算法,並給兩個例子
遺傳演算法(Genetic Algorithm, GA)是近幾年發展起來的一種嶄新的全局優化演算法,它借
用了生物遺傳學的觀點,通過自然選擇、遺傳、變異等作用機制,實現各個個體的適應性
的提高。這一點體現了自然界中"物競天擇、適者生存"進化過程。1962年Holland教授首次
提出了GA演算法的思想,從而吸引了大批的研究者,迅速推廣到優化、搜索、機器學習等方
面,並奠定了堅實的理論基礎。 用遺傳演算法解決問題時,首先要對待解決問題的模型結構
和參數進行編碼,一般用字元串表示,這個過程就將問題符號化、離散化了。也有在連續
空間定義的GA(Genetic Algorithm in Continuous Space, GACS),暫不討論。
一個串列運算的遺傳演算法(Seguential Genetic Algoritm, SGA)按如下過程進行:
(1) 對待解決問題進行編碼;
(2) 隨機初始化群體X(0):=(x1, x2, … xn);
(3) 對當前群體X(t)中每個個體xi計算其適應度F(xi),適應度表示了該個體的性能好
壞;
(4) 應用選擇運算元產生中間代Xr(t);
(5) 對Xr(t)應用其它的運算元,產生新一代群體X(t+1),這些運算元的目的在於擴展有限
個體的覆蓋面,體現全局搜索的思想;
(6) t:=t+1;如果不滿足終止條件繼續(3)。
GA中最常用的運算元有如下幾種:
(1) 選擇運算元(selection/reproction): 選擇運算元從群體中按某一概率成對選擇個
體,某個體xi被選擇的概率Pi與其適應度值成正比。最通常的實現方法是輪盤賭(roulett
e wheel)模型。
(2) 交叉運算元(Crossover): 交叉運算元將被選中的兩個個體的基因鏈按概率pc進行交叉
,生成兩個新的個體,交叉位置是隨機的。其中Pc是一個系統參數。
(3) 變異運算元(Mutation): 變異運算元將新個體的基因鏈的各位按概率pm進行變異,對
二值基因鏈(0,1編碼)來說即是取反。
上述各種運算元的實現是多種多樣的,而且許多新的運算元正在不斷地提出,以改進GA的
某些性能。系統參數(個體數n,基因鏈長度l,交叉概率Pc,變異概率Pm等)對演算法的收斂速度
及結果有很大的影響,應視具體問題選取不同的值。
GA的程序設計應考慮到通用性,而且要有較強的適應新的運算元的能力。OOP中的類的繼
承為我們提供了這一可能。
定義兩個基本結構:基因(ALLELE)和個體(INDIVIDUAL),以個體的集合作為群體類TP
opulation的數據成員,而TSGA類則由群體派生出來,定義GA的基本操作。對任一個應用實
例,可以在TSGA類上派生,並定義新的操作。
TPopulation類包含兩個重要過程:
FillFitness: 評價函數,對每個個體進行解碼(decode)並計算出其適應度值,具體操
作在用戶類中實現。
Statistic: 對當前群體進行統計,如求總適應度sumfitness、平均適應度average、最好
個體fmax、最壞個體fmin等。
TSGA類在TPopulation類的基礎上派生,以GA的系統參數為構造函數的參數,它有4個
重要的成員函數:
Select: 選擇運算元,基本的選擇策略採用輪盤賭模型(如圖2)。輪盤經任意旋轉停止
後指針所指向區域被選中,所以fi值大的被選中的概率就大。
Crossover: 交叉運算元,以概率Pc在兩基因鏈上的隨機位置交換子串。
Mutation: 變異運算元,以概率Pm對基因鏈上每一個基因進行隨機干擾(取反)。
Generate: 產生下代,包括了評價、統計、選擇、交叉、變異等全部過程,每運行一
次,產生新的一代。
SGA的結構及類定義如下(用C++編寫):
[code] typedef char ALLELE; // 基因類型
typedef struct{
ALLELE *chrom;
float fitness; // fitness of Chromosome
}INDIVIDUAL; // 個體定義
class TPopulation{ // 群體類定義
public:
int size; // Size of population: n
int lchrom; // Length of chromosome: l
float sumfitness, average;
INDIVIDUAL *fmin, *fmax;
INDIVIDUAL *pop;
TPopulation(int popsize, int strlength);
~TPopulation();
inline INDIVIDUAL &Indivial(int i){ return pop[i];};
void FillFitness(); // 評價函數
virtual void Statistics(); // 統計函數
};
class TSGA : public TPopulation{ // TSGA類派生於群體類
public:
float pcross; // Probability of Crossover
float pmutation; // Probability of Mutation
int gen; // Counter of generation
TSGA(int size, int strlength, float pm=0.03, float pc=0.6):
TPopulation(size, strlength)
{gen=0; pcross=pc; pmutation=pm; } ;
virtual INDIVIDUAL& Select();
virtual void Crossover(INDIVIDUAL &parent1, INDIVIDUAL &parent2,
INDIVIDUAL &child1, INDIVIDUAL &child2);
&child1, INDIVIDUAL &child2);
virtual ALLELE Mutation(ALLELE alleleval);
virtual void Generate(); // 產生新的一代
};
用戶GA類定義如下:
class TSGAfit : public TSGA{
public:
TSGAfit(int size,float pm=0.0333,float pc=0.6)
:TSGA(size,24,pm,pc){};
void print();
}; [/code]
由於GA是一個概率過程,所以每次迭代的情況是不一樣的;系統參數不同,迭代情況
也不同。在實驗中參數一般選取如下:個體數n=50-200,變異概率Pm=0.03, 交叉概率Pc=
0.6。變異概率太大,會導致不穩定。
參考文獻
● Goldberg D E. Genetic Algorithm in Search, Optimization, and machine
Learning. Addison-Wesley, Reading, MA, 1989
● 陳根社、陳新海,"遺傳演算法的研究與進展",《信息與控制》,Vol.23,
NO.4, 1994, PP215-222
● Vittorio Maniezzo, "Genetic Evolution of the Topology and Weight Distri
bution of the Neural Networks", IEEE, Trans. on Neural Networks, Vol.5, NO
.1, 1994, PP39-53
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅰ
l Networks, Vol.5, NO.1, 1994, PP102-119
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅱ
al Networks, Vol.5, NO.1, 1994, PP102-119
● Gunter Rudolph, Convergence Analysis of Canonical Genetic Algorithms, I
EEE, Trans. on Neural Networks, Vol.5, NO.1, 1994, PP96-101
● A E Eiben, E H L Aarts, K M Van Hee. Gloable convergence of genetic alg
orithms: A Markov chain analysis. in Parallel Problem Solving from Nat
ure. H.-P.Schwefel, R.Manner, Eds. Berlin and Heidelberg: Springer, 1991
, PP4-12
● Wirt Atmar, "Notes on the Simulation of Evolution", IEEE, Trans. on Neu
ral Networks, Vol.5, NO.1, 1994, PP130-147
● Anthony V. Sebald, Jennifer Schlenzig, "Minimax Design of Neural Net Co
ntrollers for Highly Uncertain Plants", IEEE, Trans. on Neural Networks, V
ol.5, NO.1, 1994, PP73-81
● 方建安、邵世煌,"採用遺傳演算法自學習模型控制規則",《自動化理論、技術與應
用》,中國自動化學會 第九屆青年學術年會論文集,1993, PP233-238
● 方建安、邵世煌,"採用遺傳演算法學習的神經網路控制器",《控制與決策》,199
3,8(3), PP208-212
● 蘇素珍、土屋喜一,"使用遺傳演算法的迷宮學習",《機器人》,Vol.16,NO.5,199
4, PP286-289
● M.Srinivas, L.M.Patnaik, "Adaptive Probabilities of Crossover and Mutat
ion", IEEE Trans. on S.M.C, Vol.24, NO.4, 1994 of Crossover and Mutation",
IEEE Trans. on S.M.C, Vol.24, NO.4, 1994
● Daihee Park, Abraham Kandel, Gideon Langholz, "Genetic-Based New Fuzzy
Reasoning Models with Application to Fuzzy Control", IEEE Trans. S. M. C,
Vol.24, NO.1, PP39-47, 1994
● Alen Varsek, Tanja Urbancic, Bodgan Filipic, "Genetic Algorithms in Con
troller Design and Tuning", IEEE Trans. S. M. C, Vol.23, NO.5, PP1330-13
39, 1993
❸ 遺傳演算法原理簡介
遺傳演算法(Genetic Algorithm, GA)是一種進化計算(Evolutionary Computing)演算法,屬於人工智慧技術的一部分。遺傳演算法最早是由John Holland和他的學生發明並改進的,源於對達芬奇物種進化理論的模仿。在物種進化過程中,為了適應環境,好的基因得到保留,不好的基因被淘汰,這樣經過很多代基因的變化,物種的基因就是當前自然環境下適應度最好的基因。該演算法被廣泛應用於優化和搜索中,用於尋求最優解(或最優解的近似),其最主要的步驟包括交叉(crossover)和突變(mutation)。
所有的生物體都由細胞組成,每個細胞中都包含了同樣的染色體(chromosome)。染色體由一串DNA組成,我們可以簡單地把一個生物個體表示為一條染色體。每條染色體上都包含著基因,而基因又是由多個DNA組成的。每個基因都控制著個體某個性狀的表達,例如眼睛的顏色、眼皮的單雙等。在物種繁衍的過程中,首先發生交叉,來自於父母的染色體經過分裂和重組,形成後代的染色體。之後,後代有一定概率發生基因突變,即染色體上某個位置處的基因以一定概率發生變化。之後,對每一代都重復進行交叉和突變兩個步驟。對於每一個後代,我們可以通過一定的方式測量其適應度。適應度越好的個體,在下一次交叉中被選中的概率越大,它的基因越容易傳給下一代。這樣,後代的適應度就會越來越好,直到收斂到一個穩定值。
在優化問題中,可行解總是有很多個,我們希望尋找一個最優解,它相對於其他可行解來說具有更好的適應度(即目標函數值更大或更小)。每個可行解就是一個「生物個體」,可以表示為狀態空間中的一個點和適應度。每個解都是一個經過編碼的序列,已二進制編碼為例,每個解都是一個二進制序列。這樣每個染色體就是一個二進制序列。遺傳演算法從從一組可行解開始,稱為population,從population中隨機選擇染色體進行交叉產生下一代。這一做法的基於下一代的適應度會好於上一代。遺傳演算法的過程如下:
終止條件可以是達到了最大迭代次數,或者是前後連續幾代的最優染色體的適應度差值小於一個閾值。以上演算法描述也許還不夠直觀,我們舉例說明。假設解可以用二進制編碼表示,則每個染色體都是一個二進制序列。假設序列長度為16,則每個染色體都是一個16位的二進制序列:
首先,我們隨機生成一個population,假設population size為20,則有20個長度為16的二進制序列。計算每個染色體的適應度,然後選取兩個染色體進行交叉,如下圖所示。下圖在第6為上將染色體斷開再重組,斷開的位置是可以隨機選擇的。當然,斷裂位置也可以不止一個。可以根據具體問題選擇具體的交叉方式來提升演算法性能。
之後,隨機選取後代染色體上某個基因發生基因突變,突變的位置是隨機選取的。並且,基因突變並不是在每個後代上都會發生,只是有一定的概率。對於二進制編碼,基因突變的方式是按位取反:
上述例子是關於二進制編碼的,像求解一元函數在某個區間內的最大最小值就可以使用二進制編碼。例如,求解函數f(x)=x+sin(3x)+cos(3x)在區間[0,6]內的最小值。假設我們需要最小值點x保留4位小數,那麼求解區間被離散成60000個數。因為2 {15}<60000<2 {16},所以,需要16位二進制數來表示這60000個可能的解。其中0x0000表示0,0x0001表示0.0001,以此類推。針對這個例子,文末給出了demo code.
然而,在排序問題中無法使用二進制編碼,應該採用排列編碼(permutation encoding)。例如有下面兩個染色體:
交叉:隨機選取一個交叉點,從該出將兩個染色體斷開。染色體A的前部分組成後代1的前部分,然後掃描染色體B,如果出現了後代1中不包含的基因,則將其順序加入後代1中。同理,染色體B的前部分組成了後代2的前部分,掃描染色體A獲得後代2的後部分。注意,交叉的方式多種多樣,此處只是舉出其中一種方式。
( 1 5 3 2 6 | 4 7 9 8) + ( 8 5 6 7 2 | 3 1 4 9) => ( 1 5 3 2 6 8 7 4 9) + ( 8 5 6 7 2 1 3 4 9)
突變:對於一個染色體,隨機選中兩個基因互換位置。例如第3個基因和倒數第2個基因互換:
(1 5 3 2 6 8 7 4 9) => (1 5 4 2 6 8 7 3 9)
此外還有值編碼(value encoding)和樹編碼(tree encoding)等,具體例子可以參考這個鏈接: http://obitko.com/tutorials/genetic-algorithms/encoding.php
在實際的遺傳演算法中,往往會保留上一代中的少數幾個精英(elite),即將上一代population中適應度最好的幾個染色體加入到後代的poulation中,同時去除後代population中適應度最差的幾個染色體。通過這個策略,如果在某次迭代中產生了最優解,則最優解能夠一直保留到迭代結束。
用GA求函數最小值的demo code: https://github.com/JiaxYau/GA_test
參考資料 :
[1] Introction to Genetic Algorithm, http://obitko.com/tutorials/genetic-algorithms/index.php
[2] Holland J H. Adaption in natural and artificial systems