隨機演算法有哪些
⑴ 有哪些隨機數演算法呢
1、數值概率演算法:用於數值問題的求解。所得到的解幾乎都是近似解,近似解的精度
隨著計算時間的增加而不斷地提高。
2、拉斯維加斯演算法(LasVegas):要麼給出問題的正確答案,要麼得不到答案。反復求解多次,可
使失效的概率任意小。
3、蒙特卡羅演算法(MonteCarlo):總能得到問題的答案,偶然產生不正確的答案。重復運行,每一次
都進行隨機選擇,可使不正確答案的概率變得任意小。
4、舍伍德演算法(Sherwood):很多具有很好的平均運行時間的確定性演算法,在最壞的情況下性能很
壞。引入隨機性加以改造,可以消除或減少一般情況和最壞情況的差別。
⑵ 求各種產生隨機數的演算法
多的很呀!別撤消呀,千萬! 不過幾乎都是偽隨機數。 隨機序列的演算法 找到了兩個演算法, 第一個很簡單, 但可惜不是隨機的, 第二個是典型的偽隨機數演算法, 可惜要用到2的幾百萬次方這樣巨大的整數, 真痛苦 要是有UNIX上計算密碼的源代碼就好了 第一種做法: f(k) = (k*F(N-1)) mod F(N)其中, k是一個序列號, 就是要取的那個數的順序號 F(N)是這樣一個序列 F(0) = 0, F(1) = 1, F(N+2) = F(N+1)+F(N) (for N>=0)第二種做法V = ( ( V * 2 ) + B .xor. B ... )(Mod 2^n)N+1 N 0 2V是要取的隨機數, B是個種子, n是隨機數的最大個數 原來這個問題, 很高難, 不少數學高手都為解決這個問題寫了論文, 咳咳, 偶真是個白痴 呵呵, 效果肯定是不錯啦, 因為用不到很大的表. 至於應用是這樣的, 比如, 你要給每個用戶在注冊的時候一個ID但有不希望用戶在看到自己的ID的時候能知道其他用戶的ID, 如果用SEQUENCE來生成ID的話, 一個用戶只要把自己的ID減1就能得到其它用戶的ID了. 所以要用隨機數來做ID, 這樣用戶很難猜到其他用戶的ID了. 當然主要的問題是, 隨機數可能重復. 因此希望使用一個隨機數做種子用它來確定一組"無規律"的自然數序列, 並且在這個序列中不會出現重復的自然數. 在這里使用的方法生成的序列並不是沒有規律的, 只不過這個軌律很難被發現就是了. Xn+1 = (aXn + b) mod c (其中, abc通常是質數)是一種被廣泛使用的最簡單的隨機數發生演算法, 有研究表表明這個演算法生成的隨機數基本上符合統計規律, JAVA, BORLAND C等用的都是這個方法, 一般只要保證第一個種子是真正的隨機數就行了, 下面來說一下重復的問題, 上述方法會有可能出現重復, 因為當(aXn + b)有可能是同樣的數或者說余數相同的數, 因此要想不重復就得變形 偶想到的方法是 Xn=(a*n + b) mod c n是一個在1到c之間的整數, a*n + b就是一個線性公式了, 且若n不同則a*n + b也不同, 它們除上質數c得到的余數也肯定不同, 因為 若不考慮a和b而只有n的時候, 每次的結果都是n,而線性公式, 只不過移動了這條直線的位置和斜率而已, 每個結果仍然不會相同的, 為了增加不可預計性, 偶又為上面那個公式設計了, 隨機數種子, 於是就變成了這個樣子 F(N)=(隨機數*(N+隨機數))MOD 一個質數 這樣就能夠產生 1到選定質數之間的一個"無規律"的自然數序列了, 只要改變隨機數就能改變序列的次序 在應用的時候, 要把隨機數種子和最後用到的序列號保存到一個表裡, 每此使用的時候取出來算好, 再把序列號更新一下就可以了 具體地說, 就是可以建一個表來保存每個序列的隨機數種子, 然後再為這個序列建一個SEQUENCE就行瞭然後就SELECT MOD(序列控製表.隨機數*(SEQ.NEXTVAL+序列控製表.隨機數)),序列控製表.質數) FROM 序列控製表 WHERE 序列控製表.序列ID=XX就OK了注意 序列控製表.質數 決定了序列的范圍
⑶ 隨機性數學方法有哪些
隨機數學是研究隨機現象統計規律性的一個數學分支,涉及四個主要部分:概率論、隨機過程、數理統計、隨機運籌。概率論是後三者的基礎。則睜廳
4、舍伍德演算法 Sherwood
利用隨機演算法改造已有演算法,使得演算法的性能盡量與輸入數據無關,即平滑演算法的性能。它總能求得問題的一個解,且求得的解總是正確的。