當前位置:首頁 » 操作系統 » 決策樹演算法的實現

決策樹演算法的實現

發布時間: 2024-09-30 10:52:46

A. 決策樹法的基本步驟

決策樹是一種常用的機器學習演算法,它可以用於分類和回歸問題。下面是決策樹演算法的基本步驟:

1. 收集數據:收集一組帶有標簽的數據集,其中每個樣本包含若干個特徵和一個標簽。特徵是用於決策的信息,標簽是我們需要預測的結果。

7. 調整參數:根據評估結果調整決策樹的參數,如選擇不同的特徵選擇方法、調整決策樹的深度等。

8. 預測未知數據:使用調整後的決策樹對新的未知數據進行預測。

B. 決策樹的演算法

C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;
2) 在樹構造過程中進行剪枝;
3) 能夠完成對連續屬性的離散化處理;
4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。此外,C4.5隻適合於能夠駐留於內存的數據集,當訓練集大得無法在內存容納時程序無法運行。
具體演算法步驟如下;
1創建節點N
2如果訓練集為空,在返回節點N標記為Failure
3如果訓練集中的所有記錄都屬於同一個類別,則以該類別標記節點N
4如果候選屬性為空,則返回N作為葉節點,標記為訓練集中最普通的類;
5for each 候選屬性 attribute_list
6if 候選屬性是連續的then
7對該屬性進行離散化
8選擇候選屬性attribute_list中具有最高信息增益率的屬性D
9標記節點N為屬性D
10for each 屬性D的一致值d
11由節點N長出一個條件為D=d的分支
12設s是訓練集中D=d的訓練樣本的集合
13if s為空
14加上一個樹葉,標記為訓練集中最普通的類
15else加上一個有C4.5(R - {D},C,s)返回的點 背景:
分類與回歸樹(CART——Classification And Regression Tree)) 是一種非常有趣並且十分有效的非參數分類和回歸方法。它通過構建二叉樹達到預測目的。
分類與回歸樹CART 模型最早由Breiman 等人提出,已經在統計領域和數據挖掘技術中普遍使用。它採用與傳統統計學完全不同的方式構建預測准則,它是以二叉樹的形式給出,易於理解、使用和解釋。由CART 模型構建的預測樹在很多情況下比常用的統計方法構建的代數學預測准則更加准確,且數據越復雜、變數越多,演算法的優越性就越顯著。模型的關鍵是預測准則的構建,准確的。
定義:
分類和回歸首先利用已知的多變數數據構建預測准則, 進而根據其它變數值對一個變數進行預測。在分類中, 人們往往先對某一客體進行各種測量, 然後利用一定的分類准則確定該客體歸屬那一類。例如, 給定某一化石的鑒定特徵, 預測該化石屬那一科、那一屬, 甚至那一種。另外一個例子是, 已知某一地區的地質和物化探信息, 預測該區是否有礦。回歸則與分類不同, 它被用來預測客體的某一數值, 而不是客體的歸類。例如, 給定某一地區的礦產資源特徵, 預測該區的資源量。

C. 決策樹演算法-原理篇

關於決策樹演算法,我打算分兩篇來講,一篇講思想原理,另一篇直接擼碼來分析演算法。本篇為原理篇。
通過閱讀這篇文章,你可以學到:
1、決策樹的本質
2、決策樹的構造過程
3、決策樹的優化方向

決策樹根據使用目的分為:分類樹和回歸樹,其本質上是一樣的。本文只講分類樹。

決策樹,根據名字來解釋就是,使用樹型結構來模擬決策。
用圖形表示就是下面這樣。

其中橢圓形代表:特徵或屬性。長方形代表:類別結果。
面對一堆數據(含有特徵和類別),決策樹就是根據這些特徵(橢圓形)來給數據歸類(長方形)
例如,信用貸款問題,我根據《神奇動物在哪裡》的劇情給銀行造了個決策樹模型,如下圖:

然而,決定是否貸款可以根據很多特徵,然麻雞銀行選擇了:(1)是否房產價值>100w;(2)是否有其他值錢的抵押物;(3)月收入>10k;(4)是否結婚;這四個特徵,來決定是否給予貸款。
先不管是否合理,但可以肯定的是,決策樹做了特徵選擇工作,即選擇出類別區分度高的特徵。

由此可見, 決策樹其實是一種特徵選擇方法。 (特徵選擇有多種,決策樹屬於嵌入型特徵選擇,以後或許會講到,先給個圖)即選擇區分度高的特徵子集。

那麼, 從特徵選擇角度來看決策樹,決策樹就是嵌入型特徵選擇技術

同時,決策樹也是機器學習中經典分類器演算法,通過決策路徑,最終能確定實例屬於哪一類別。
那麼, 從分類器角度來看決策樹,決策樹就是樹型結構的分類模型

從人工智慧知識表示法角度來看,決策樹類似於if-then的產生式表示法。
那麼, 從知識表示角度來看決策樹,決策樹就是if-then規則的集合

由上面的例子可知,麻雞銀行通過決策樹模型來決定給哪些人貸款,這樣決定貸款的流程就是固定的,而不由人的主觀情感來決定。
那麼, 從使用者角度來看決策樹,決策樹就是規范流程的方法

最後我們再來看看決策樹的本質是什麼已經不重要了。
決策樹好像是一種思想,而通過應用在分類任務中從而成就了「決策樹演算法」。

下面內容還是繼續講解用於分類的「決策樹演算法」。

前面講了決策樹是一種 特徵選擇技術

既然決策樹就是一種特徵選擇的方法,那麼經典決策樹演算法其實就是使用了不同的特徵選擇方案。
如:
(1)ID3:使用信息增益作為特徵選擇
(2)C4.5:使用信息增益率作為特徵選擇
(3)CART:使用GINI系數作為特徵選擇
具體選擇的方法網上一大把,在這里我提供幾個鏈接,不細講。

但,不僅僅如此。
決策樹作為嵌入型特徵選擇技術結合了特徵選擇和分類演算法,根據特徵選擇如何生成分類模型也是決策樹的一部分。
其生成過程基本如下:

根據這三個步驟,可以確定決策樹由:(1)特徵選擇;(2)生成方法;(3)剪枝,組成。
決策樹中學習演算法與特徵選擇的關系如下圖所示:

原始特徵集合T:就是包含收集到的原始數據所有的特徵,例如:麻瓜銀行收集到與是否具有償還能力的所有特徵,如:是否結婚、是否擁有100w的房產、是否擁有汽車、是否有小孩、月收入是否>10k等等。
中間的虛線框就是特徵選擇過程,例如:ID3使用信息增益、C4.5使用信息增益率、CART使用GINI系數。
其中評價指標(如:信息增益)就是對特徵的要求,特徵需要滿足這種條件(一般是某個閾值),才能被選擇,而這一選擇過程嵌入在學習演算法中,最終被選擇的特徵子集也歸到學習演算法中去。
這就是抽象的決策樹生成過程,不論哪種演算法都是將這一抽象過程的具體化。
其具體演算法我將留在下一篇文章來講解。

而決策樹的剪枝,其實用得不是很多,因為很多情況下隨機森林能解決決策樹帶來的過擬合問題,因此在這里也不講了。

決策樹的優化主要也是圍繞決策樹生成過程的三個步驟來進行優化的。
樹型結構,可想而知,演算法效率決定於樹的深度,優化這方面主要從特徵選擇方向上優化。
提高分類性能是最重要的優化目標,其主要也是特徵選擇。
面對過擬合問題,一般使用剪枝來優化,如:李國和基於決策樹生成及剪枝的數據集優化及其應用。
同時,決策樹有很多不足,如:多值偏向、計算效率低下、對數據空缺較為敏感等,這方面的優化也有很多,大部分也是特徵選擇方向,如:陳沛玲使用粗糙集進行特徵降維。
由此,決策樹的優化方向大多都是特徵選擇方向,像ID3、C4.5、CART都是基於特徵選擇進行優化。

參考文獻
統計學習方法-李航
特徵選擇方法綜述-李郅琴
決策樹分類演算法優化研究_陳沛玲
基於決策樹生成及剪枝的數據集優化及其應用-李國和

D. 簡述決策樹的原理及過程

決策樹是一種常見的機器學習演算法,它可以用來進行分類和回歸分析,並且易於理解和解釋。決策樹的原理和過程如下:

原理:決策樹是一種基於樹形結構的分類模型,它通過一系列的決策來對數據進行分類或預測。在決策樹中,每一個節點代表一個特徵或屬性,每一條邊代表一個判斷或決策,而每一個葉子節點代表一個分類或預測結果。通過對樣本數據進行不斷地劃分和分類,最終可以得到一棵樹形結構的分類模型。

(5) 模型評估:使用測試數據集對構建好的決策樹進行評估和優化,以提高分類或預測的准確性和穩定性。

總之,決策樹是一種基於樹形結構的分類模型,其原理和過程包括特徵選擇、特徵劃分、遞歸構建、剪枝處理和模型評估等步驟。通過構建決策樹,可以對數據進行分類和預測,並且易於理解和解釋,是一種常見的機器學習演算法。

E. 決策樹演算法

決策樹演算法的演算法理論和應用場景

演算法理論:

我了解的決策樹演算法,主要有三種,最早期的ID3,再到後來的C4.5和CART這三種演算法。

這三種演算法的大致框架近似。

決策樹的學習過程

1.特徵選擇

在訓練數據中 眾多X中選擇一個特徵作為當前節點分裂的標准。如何選擇特徵有著很多不同量化評估標准,從而衍生出不同的決策樹演算法。

2.決策樹生成

根據選擇的特徵評估標准,從上至下遞歸生成子節點,直到數據集不可分或者最小節點滿足閾值,此時決策樹停止生長。

3.剪枝

決策樹極其容易過擬合,一般需要通過剪枝,縮小樹結構規模、緩解過擬合。剪枝技術有前剪枝和後剪枝兩種。

有些演算法用剪枝過程,有些沒有,如ID3。

預剪枝:對每個結點劃分前先進行估計,若當前結點的劃分不能帶來決策樹的泛化性能的提升,則停止劃分,並標記為葉結點。

後剪枝:現從訓練集生成一棵完整的決策樹,然後自底向上對非葉子結點進行考察,若該結點對應的子樹用葉結點能帶來決策樹泛化性能的提升,則將該子樹替換為葉結點。

但不管是預剪枝還是後剪枝都是用驗證集的數據進行評估。

ID3演算法是最早成型的決策樹演算法。ID3的演算法核心是在決策樹各個節點上應用信息增益准則來選擇特徵,遞歸構建決策樹。缺點是,在選擇分裂變數時容易選擇分類多的特徵,如ID值【值越多、分叉越多,子節點的不純度就越小,信息增益就越大】。

ID3之所以無法 處理缺失值、無法處理連續值、不剪紙等情況,主要是當時的重點並不是這些。

C4.5演算法與ID3近似,只是分裂標准從 信息增益 轉變成  信息增益率。可以處理連續值,含剪枝,可以處理缺失值,這里的做法多是 概率權重。

CART:1.可以處理連續值 2.可以進行缺失值處理 3.支持剪枝 4.可以分類可以回歸。

缺失值的處理是 作為一個單獨的類別進行分類。

建立CART樹

我們的演算法從根節點開始,用訓練集遞歸的建立CART樹。

1) 對於當前節點的數據集為D,如果樣本個數小於閾值或者沒有特徵,則返回決策子樹,當前節點停止遞歸。

2) 計算樣本集D的基尼系數, 如果基尼系數小於閾值 (說明已經很純了!!不需要再分了!!),則返回決策樹子樹,當前節點停止遞歸。

3) 計算當前節點現有的各個特徵的各個特徵值對數據集D的基尼系數。

4) 在計算出來的各個特徵的各個特徵值對數據集D的基尼系數中,選擇 基尼系數最小的特徵A和對應的特徵值a。根據這個最優特徵和最優特徵值,把數據集劃分成兩部分D1和D2,同時建立當前節點的左右節點,做節點的數據集D為D1,右節點的數據集D為D2。 (註:注意是二叉樹,故這里的D1和D2是有集合關系的,D2=D-D1)

5) 對左右的子節點遞歸的調用1-4步,生成決策樹。

CART採用的辦法是後剪枝法,即先生成決策樹,然後產生所有可能的剪枝後的CART樹,然後使用交叉驗證來檢驗各種剪枝的效果,選擇泛化能力最好的剪枝策略。

應用場景

比如欺詐問題中,通過決策樹演算法簡單分類,默認是CART的分類樹,默認不剪枝。然後在出圖後,自行選擇合適的葉節點進行拒絕操作。

這個不剪枝是因為欺詐問題的特殊性,欺詐問題一般而言較少,如數據的萬幾水平,即正樣本少,而整個欺詐問題需要解決的速度較快。此時只能根據業務要求,迅速針對已有的正樣本情況,在控制准確率的前提下,盡可能提高召回率。這種情況下,可以使用決策樹來簡單應用,這個可以替代原本手工選擇特徵及特徵閾值的情況。

熱點內容
壓縮文件下載後打不開 發布:2024-11-24 12:53:30 瀏覽:907
qq空間訪問量源碼 發布:2024-11-24 12:53:28 瀏覽:61
c語言字元串遍歷 發布:2024-11-24 12:51:12 瀏覽:321
2的100次方簡便的演算法 發布:2024-11-24 12:48:25 瀏覽:219
oracle添加sql 發布:2024-11-24 12:47:10 瀏覽:142
sql2000sp4安裝 發布:2024-11-24 12:43:14 瀏覽:837
android調節屏幕亮度 發布:2024-11-24 12:35:54 瀏覽:898
神力科莎要什麼電腦配置 發布:2024-11-24 12:19:11 瀏覽:842
安卓和ios對接有什麼不同 發布:2024-11-24 11:49:22 瀏覽:313
c語言讀取文件並輸出 發布:2024-11-24 11:42:45 瀏覽:623