mvdr演算法
㈠ 現代數字信號處理及其應用的圖書目錄
第1章 離散時間信號與系統
1.1 離散時間信號與系統基礎
1.1.1 離散時間信號的定義與分類
1.1.2 離散時間信號的差分和累加
1.1.3 離散時間系統定義及LTI特性
1.1.4 LTI離散時間系統響應——卷積和
1.1.5 離散時間信號相關函數及卷積表示
1.2 離散時間信號與系統的傅里葉分析
1.2.1 復指數信號通過LTI系統的響應
1.2.2 離散時間信號的傅里葉級數和傅里葉變換
1.2.3 傅里葉變換的性質
1.2.4 離散時間系統頻率響應與理想濾波器
1.2.5 離散時間信號的DFT和FFT
1.3 離散時間信號的Z變換
1.3.1 Z變換的概念
1.3.2 Z變換的性質
1.3.3 離散時間系統的z域描述——系統函數
1.3.4 離散時間系統的方框圖和信號流圖表示
1.4 LTI離散時間系統性能描述
1.4.1 系統的記憶性
1.4.2 系統的因果性
1.4.3 系統的可逆性
1.4.4 系統的穩定性和最小相位系統
1.4.5 線性相位系統與系統的群時延
1.5 離散時間系統的格型結構
1.5.1 全零點濾波器的格型結構
1.5.2 全極點濾波器的格型結構
1.6 連續時間信號的離散化及其頻譜關系
1.7 離散時間實信號的復數表示
1.7.1 離散時間解析信號(預包絡)
1.7.2 離散時間希爾伯特變換
1.7.3 離散時間窄帶信號的復數表示(復包絡)
1.8 窄帶信號的正交解調與數字基帶信號
1.8.1 模擬正交解調與採集電路原理
1.8.2 數字正交解調與採集電路原理
1.8.3 基帶信號的隨機相位與載波同步
1.9 多相濾波與信道化處理
1.9.1 橫向濾波器的多相結構
1.9.2 信號的均勻信道化
1.9.3 基於多相濾波器組的信道化原理
習題
參考文獻
第2章 離散時間平穩隨機過程
2.1 離散時間平穩隨機過程基礎
2.1.1 離散時間隨機過程及其數字特徵
2.1.2 離散時間平穩隨機過程及其數字特徵
2.1.3 遍歷性與統計平均和時間平均
2.1.4 循環平穩性的概念
2.1.5 隨機過程間的獨立、正交、相關
2.2 平穩隨機過程的自相關矩陣及其性質
2.2.1 自相關矩陣的定義
2.2.2 自相關矩陣的基本性質
2.2.3 自相關矩陣的特徵值與特徵向量的性質
2.3 離散時間平穩隨機過程的功率譜密度
2.3.1 功率譜的定義
2.3.2 功率譜的性質
2.3.3 平穩隨機過程通過LTI離散時間系統的功率譜
2.4 離散時間平穩隨機過程的參數模型
2.4.1 Wold分解定理
2.4.2 平穩隨機過程的參數模型
2.5 隨機過程高階累積量和高階譜的概念
2.5.1 高階矩和高階累積量
2.5.2 高階累積量的性質
2.5.3 高階譜的概念
習題
參考文獻
第3章 功率譜估計和信號頻率估計方法
3.1 經典功率譜估計方法
3.1.1 BT法
3.1.2 周期圖法
3.1.3 經典功率譜估計性能討論
3.1.4 經典功率譜估計的改進
3.1.5 經典功率譜估計模擬實例及性能比較
3.2 平穩隨機過程的AR參數模型功率譜估計
3.2.1 AR參數模型的正則方程
3.2.2 AR參數模型的Levinson-Durbin迭代演算法
3.2.3 AR參數模型功率譜估計步驟及模擬實例
3.2.4 AR參數模型功率譜估計性能討論
3.3 MA參數模型和ARMA參數模型功率譜估計原理
3.3.1 MA參數模型的正則方程
3.3.2 ARMA參數模型的正則方程
3.4 MVDR信號頻率估計方法
3.4.1 預備知識:標量函數關於向量的導數和梯度的概念
3.4.2 MVDR濾波器原理
3.4.3 MVDR頻率估計演算法模擬實例
3.5 APES演算法
3.5.1 APES演算法原理
3.5.2 APES演算法模擬實例
3.6 基於相關矩陣特徵分解的信號頻率估計
3.6.1 信號子空間和雜訊子空間的概念
3.6.2 MUSIC演算法
3.6.3 Root-MUSIC演算法
3.6.4 Pisarenko諧波提取方法
3.6.5 ESPRIT演算法
3.6.6 信號源個數的確定方法
3.7 譜估計在電子偵察中的應用實例
3.7.1 常規通信信號的參數估計
3.7.2 跳頻信號的參數估計
習題
參考文獻
第4章 維納濾波原理及自適應演算法
4.1 自適應橫向濾波器及其學習過程
4.1.1 自適應橫向濾波器結構
4.1.2 自適應橫向濾波器的學習過程和工作過程
4.2 維納濾波原理
4.2.1 均方誤差准則及誤差性能面
4.2.2 維納-霍夫方程
4.2.3 正交原理
4.2.4 最小均方誤差
4.2.5 計算實例1:雜訊中的單頻信號估計
4.2.6 計算實例2:信道傳輸信號的估計
4.3 維納濾波器的最陡下降求解方法
4.3.1 維納濾波的最陡下降演算法
4.3.2 最陡下降演算法的收斂性
4.3.3 最陡下降演算法的學習曲線
4.3.4 最陡下降演算法模擬實例
4.4 LMS演算法
4.4.1 LMS演算法原理
4.4.2 LMS演算法權向量均值的收斂性
4.4.3 LMS演算法均方誤差的統計特性
4.4.4 LMS演算法模擬實例
4.4.5 幾種改進的LMS演算法簡介
4.5 多級維納濾波器理論
4.5.1 輸入向量滿秩變換的維納濾波
4.5.2 維納濾波器降階分解原理
4.5.3 維納濾波器的多級表示
4.5.4 基於輸入信號統計特性的權值計算步驟
4.5.5 一種阻塞矩陣的構造方法
4.5.6 基於觀測數據的權值遞推演算法
4.5.7 模擬計算實例
習題
參考文獻
第5章 維納濾波在信號處理中的應用
5.1 維納濾波在線性預測中的應用
5.1.1 線性預測器原理
5.1.2 線性預測與AR模型互為逆系統
5.1.3 基於線性預測器的AR模型功率譜估計
5.2 前後向線性預測及其格型濾波器結構
5.2.1 前後向線性預測器(FBLP)原理
5.2.2 FBLP的格型濾波器結構
5.2.3 Burg演算法及其在AR模型譜估計中的應用
5.2.4 Burg演算法功率譜估計模擬實驗
5.3 信道均衡
5.3.1 離散時間通信信道模型
5.3.2 迫零均衡濾波器
5.3.3 基於MMSE准則的FIR均衡濾波器
5.3.4 自適應均衡及模擬實例
5.4 語音信號的線性預測編碼
5.4.1 語音信號的產生
5.4.2 基於線性預測的語音信號處理
5.4.3 模擬實驗
習題
參考文獻
第6章 最小二乘估計理論及演算法
6.1 預備知識:線性方程組解的形式
6.1.1 線性方程組的唯一解
6.1.2 線性方程組的最小二乘解
6.1.3 線性方程組的最小范數解
6.2 最小二乘估計原理
6.2.1 最小二乘估計的確定性正則方程
6.2.2 LS估計的正交原理
6.2.3 投影矩陣的概念
6.2.4 LS估計的誤差平方和
6.2.5 最小二乘方法與維納濾波的關系
6.2.6 應用實例:基於LS估計的信道均衡原理
6.3 用奇異值分解求解最小二乘問題
6.3.1 矩陣的奇異值分解
6.3.2 奇異值分解與特徵值分解的關系
6.3.3 用奇異值分解求解確定性正則方程
6.3.4 奇異值分解迭代計算簡介
6.4 基於LS估計的FBLP原理及功率譜估計
6.4.1 FBLP的確定性正則方程
6.4.2 用奇異值分解實現AR模型功率譜估計
6.5 遞歸最小二乘(RLS)演算法
6.5.1 矩陣求逆引理
6.5.2 RLS演算法原理
6.5.3 自適應均衡模擬實驗
6.6 基於QR分解的遞歸最小二乘(QR-RLS)演算法原理
6.6.1 矩陣的QR分解
6.6.2 QR-RLS演算法
6.6.3 基於Givens旋轉的QR-RLS演算法
6.6.4 利用Givens旋轉直接得到估計誤差信號
6.6.5 QR-RLS演算法的systolic多處理器實現原理
習題
參考文獻
第7章 卡爾曼濾波
7.1 基於新息過程的遞歸最小均方誤差估計
7.1.1 標量新息過程及其性質
7.1.2 最小均方誤差估計的新息過程表示
7.1.3 向量新息過程及其性質
7.2 系統狀態方程和觀測方程的概念
7.3 卡爾曼濾波原理
7.3.1 狀態向量的最小均方誤差估計
7.3.2 新息過程的自相關矩陣
7.3.3 卡爾曼濾波增益矩陣
7.3.4 卡爾曼濾波的黎卡蒂方程
7.3.5 卡爾曼濾波計算步驟
7.4 卡爾曼濾波的統計性能
7.4.1 卡爾曼濾波的無偏性
7.4.2 卡爾曼濾波的最小均方誤差估計特性
7.5 卡爾曼濾波的推廣
7.5.1 標稱狀態線性化濾波
7.5.2 擴展卡爾曼濾波
7.6 卡爾曼濾波的應用
7.6.1 卡爾曼濾波在維納濾波中的應用
7.6.2 卡爾曼濾波在雷達目標跟蹤中的應用
7.6.3 α-β濾波的概念
7.6.4 卡爾曼濾波在交互多模型演算法中的應用
7.6.5 卡爾曼濾波在數據融合中的應用
習題
參考文獻
第8章 陣列信號處理與空域濾波
8.1 陣列接收信號模型
8.1.1 均勻線陣接收信號模型
8.1.2 任意陣列(共形陣)接收信號模型
8.1.3 均勻矩形陣接收信號模型
8.1.4 均勻圓陣接收信號模型
8.2 空間譜與DOA估計
8.3 基於MUSIC演算法的信號DOA估計方法
8.3.1 MUSIC演算法用於信號DOA估計
8.3.2 模擬實例
8.4 信號DOA估計的ESPRIT演算法
8.4.1 ESPRIT演算法用於信號DOA估計的原理
8.4.2 模擬實例
8.5 干涉儀測向原理
8.5.1 一維相位干涉儀測向原理
8.5.2 二維相位干涉儀
8.6 空域濾波與數字波束形成
8.6.1 空域濾波和陣方向圖
8.6.2 數字自適應干擾置零
8.7 基於MVDR演算法的DBF方法
8.7.1 MVDR波束形成器原理
8.7.2 QR分解SMI演算法
8.7.3 MVDR波束形成器實例
8.7.4 LCMV波束形成器簡介
8.7.5 LCMV波束形成器的維納濾波器結構
8.8 空域APES數字波束形成和DOA估計方法
8.8.1 前向SAPES波束形成器原理
8.8.2 模擬實例
8.9 多旁瓣對消數字自適應波束形成方法
8.9.1 多旁瓣對消數字波束形成原理
8.9.2 多旁瓣對消的最小二乘法求解
8.10 陣列信號處理中的其他問題
8.10.1 相關信號源問題
8.10.2 寬頻信號源問題
8.10.3 陣列校正與均衡問題
習題
參考文獻
第9章 盲信號處理
9.1 盲信號處理的基本概念
9.1.1 盲系統辨識與盲解卷積
9.1.2 信道盲均衡
9.1.3 盲源分離與獨立分量分析(ICA)
9.1.4 盲波束形成
9.2 Bussgang盲均衡原理
9.2.1 自適應盲均衡與Bussgang過程
9.2.2 Sato演算法
9.2.3 恆模演算法
9.2.4 判決引導演算法
9.3 SIMO信道模型及子空間盲辨識原理
9.3.1 SIMO信道模型
9.3.2 SIMO信道模型的Sylvester矩陣
9.3.3 SIMO信道的可辨識條件和模糊性
9.3.4 基於子空間的盲辨識演算法
9.4 SIMO信道的CR盲辨識原理及自適應演算法
9.4.1 CR演算法
9.4.2 多信道LMS演算法
9.5 基於陣列結構的盲波束形成
9.5.1 基於奇異值分解的降維預處理
9.5.2 基於ESPRIT演算法的盲波束形成
9.6 基於信號恆模特性的盲波束形成
9.6.1 SGD CMA演算法
9.6.2 RLS CMA演算法
9.6.3 解析恆模演算法簡介
習題
參考文獻
索引
常用符號表
㈡ 聊聊Beamforming
Beamforming技術正廣泛應用於實際生活,最初在802.11n標准中引入,但並未成為必備項。技術進步下,Beamforming已成為4G、5G技術的關鍵組成部分。它是基於MIMO天線的一種技術,與xTxR的主要區別在於,Beamforming在同一時間截面中僅存在一條數據流,可通過時分方式切換數據流,而xTxR在同一時間截面中,多條天線上運行的數據流不同。Beamforming的優勢在於能將能量集中在較小區域,使較小能量獲得更遠傳輸距離,同時,主瓣方向可由軟體調整,無需機械調整。基站甚至使用可重構天線陣列,靈活實現Beamforming和xTxR,滿足多用戶多角度定向通信需求。
Beamforming為無線通信開辟了更多可能性,特別是在mmWave及更高頻段,定向傳輸能量和信息具有無可比擬的優勢,有助於降低整機發射功率,延長節點維護周期。
波束成形技術主要包括自適應波束成形、固定波束和切換波束成形。固定波束的天線方向圖固定,由三個120°扇區分割而成。切換波束是對固定波束的擴展,將每個扇區細分為多個分區,根據用戶在扇區內移動,自動調整波束至包含最強信號的分區。然而,切換波束成形無法區分理想信號與干擾信號。自適應波束成形通過實時調整天線陣加權值,對准用戶信號,壓低旁瓣,顯著提高系統容量。關鍵在於精確獲取信道參數。
以熱點為例,基站周期性發送聲信號,客戶端反饋信道信息,基站據此發送指向特定客戶端的復形數據包,增強該方向強度,獲得空間分集增益和發射陣列增益。使用4組發射天線的熱點,可實現更大空間分集增益。
支持802.11n標準的Beamforming分為顯性波束成形和隱形波束成形。顯性波束成形在AP和客戶端均有設置,顯著提高距離和鏈路耐用性。隱形波束成形客戶端無需額外處理,同樣能增加距離和耐用性。
熱點實現Beamforming的步驟包括:基站與客戶端周期性握手,客戶端反饋信道信息,基站基於信道狀態發送指向特定客戶端的復形數據包。AP使用4x4三組空間流的天線,獲得增益基礎上,實現更大空間分集增益。
Beamforming的實現依賴於天線陣列,通過控制波源的相對相位和幅度,使信號能量集中在特定方向,減少干擾。波束成形的關鍵在於通過多個天線配合特定延遲,等效實現具有方向性的天線。陣列信號加窗處理,可以改變波束寬度和特性。DFT技術用於實現波束成形,對應不同位置的相位信息,類似於頻域變換。
自適應波束成形結合信號特性,調整權重相加,優化系統性能。准則函數常用信噪比最大准則、均方誤差最小准則等,求解思路包括直接求解和利用梯度下降演算法。例如,MVDR演算法直接求解權重矩陣,從而實現波束成形。
Beamforming面臨柵瓣問題,即在不同位置出現相似波束的現象。空間譜分析涉及到功率譜密度和空域變換,與頻域分析類比。在Beamforming中,空間譜描述特定方向上的信號能量,與MUSIC等演算法的譜有所區別,但兩者都是對信號空間特性的分析。