vpr演算法
發布時間: 2024-08-29 08:25:20
A. 聲紋識別的分類
聲紋識別(Voiceprint Recognition, VPR),也稱為說話人識別(Speaker Recognition),有兩類,即說話人辨認(Speaker Identification)和說話人確認(Speaker Verification)。前者用以判斷某段語音是若幹人中的哪一個所說的,是「多選一」問題;而後者用以確認某段語音是否是指定的某個人所說的,是「一對一判別」問題。不同的任務和應用會使用不同的聲紋識別技術,如縮小刑偵范圍時可能需要辨認技術,而銀行交易時則需要確認技術。不管是辨認還是確認,都需要先對說話人的聲紋進行建模,這就是所謂的「訓練」或「學習」過程。 在對說話的人辨認方面,根據待識別的說話人是否在注冊的說話人集合內,說話人辨認可以分為開集(open-set)辨認和閉集(close-set)辨認。前者假定待識別說話人可以在集合外,而後者假定待識別說話人在集合內。顯然,開集辨認需要有一個對集外說話人的「拒識問題」,而且閉集辨認的結果要好於開集辨認結果。本質上講,說話人確認和開集說話人辨認都需要用到拒識技術,為了達到很好的拒識效果,通常需要訓練一個假冒者模型或背景模型,以便拒識時有可資比較的對象,閾值容易選定。而建立背景模型的好壞直接影響到拒識甚至聲紋識別的性能。一個好的背景模型,往往需要通過預先採集好的若干說話人的數據,通過某種演算法去建立。
如果技術達到一定的水平,可以把文本相關識別並入文本無關識別,把閉集辨認並入開集辨認,從而提供更為方便的使用方法。
熱點內容