當前位置:首頁 » 操作系統 » 相噪演算法

相噪演算法

發布時間: 2024-08-20 12:57:05

㈠ DDS晶元AD9830主要有哪些應用電路

AD9830的原理及在中波激勵器中的應用#
陳治鵬董天臨
(華中科技大學電信系430074)
摘要
VCSMHir2IMMK
從DDS原理分析著手,著重介紹了AD9830R的特點、用途以及與其它頻率合成器的比較。最後給出了AD9830在中波激勵中的應用實例及使用中的注意事項。實驗誣明,AD9830在中波領域可得到廣泛應用。
X*►*><■«JMMT|KM«私
關鍵詞中波激勵器控制直接數字頻率合成(DDS)


1概述
中波激勵器是發射端的重要組成部分,它主要為發射機提供射頻信號源,完成信息的處理。其具體實現方法是先形成發射部分所需的各種調制信號,再將信號頻率從音頻搬移到所需的發射頻率,並初步提髙功率以驅動開關功率放大器。激勵器關鍵部分包括頻率合成、微機控制以及信號通道等部分。AD9830是ADI公司生產的直接數字頻率合成器件。它具有換頻速度快、頻率解析度高(頻率步進間隔小)、相位雜訊低、體積小、重量輕等特點,雖然它的輸出頻率范圍不是很寬,對於中波300KHZ〜3MHz頻段,用AD9830作為激勵或接收部分的頻率合成單元是非常合適的。
2直接數字頻率合成原理分析
直接數字頻合器包括系統時鍾源、相位增量計算器、相位累加器、波形查找器、數模轉換器(DAC)和低通濾波器等部分組成,其內部過程如圖1所示。

圖1DDS內部過程示意圖在實際應用中,它的計算公式為f。=K*fc/2N=A少*fc/2N,其中:fo——為輸出頻率N——為相位累加器位數K——為不變數或相位增量值(AO)fc為系統時鍾
從上式可看出,DDS實際是經過兩次變
陳治鵬等:AD9830的原理及在中波激勵器中的應用


換:位序列。這個過程一般由一個以f£作時鍾的
(1)從不變數K以時鍾ft產生量化的相N位相位累加器來實現,如圖2所示。


相位量化序列
N


c


圖2相位累加過程圖


(2)從離散量化的相位序列產生對應的正弦信號的離散幅度序列。這個過程可由EPROM波形存儲表的尋找來實現,如圖3所示。
r-rr;一~正弦幅度量化序列相位ft化序列地址數據S(n>^
1EPROM^
圖3相位轉變為椹度過程圖其中,不變數K就是相位增童,又稱頻率控制字,在CPU控制下,把量化的數字波形經D/A變換,最後通過低通濾波或帶通濾波器平滑就可得到頻率為f。=K^fc/2N=△<D^fc/2N的正弦信號。當K=1時,DDS輸出最低頻率,為fc/2N,也就是頻率解析度。所以,只要N足夠大,fe盡量小,DDS就可以得到很少的頻率間隔,AD9830的N為32。由此可見,要得到不同輸出頻率,只要在CPU的控制下改變K即可。
3各種頻合器的比較分析
目前,按頻合器的形式可分為:直接式、集成鎖相環式和直接數字式(DDS)三種。直接式是將一個高穩定度和高准確度的標准頻率經過加、減、乘、除四則運算,產生同樣穩定度和精確度的多個頻率。它的優點是換頻速度快,解析度可做到很高,可做到微秒級的換頻速度,而且相位雜訊特性好,但組合干擾信號多,不容易抑制。另外,它還有一個致命弱點是:成本髙、電路結構復雜、體積大。鎖相式頻合器具有體積小、電路簡潔、雜波抑制高的特點,還具有窄帶跟蹤濾波能力,因而頻譜可做得很好,但由於環路附加雜訊的影響,在環路帶寬內相位雜訊特性很差,在環路帶寬外則取決於VCO的相噪特性。如果要改善相位雜訊,就必須壓窄環路帶寬,因而它的換頻速度不可能做得很快。近幾年,隨著超大規模集成電路、髙速數字信號處理和高精度高速數模轉換器(DAC)技術的發展,直接數字頻率合成技術已愈加成熟,已廣泛得到應用。DDS是通過在更高頻率上累加相位來產生所需的正弦或餘弦信號。它與系統時鍾(標頻)具有同樣的頻率穩定度和精確度。因而,它具有換頻速度快,頻率解析度高,體積小和重量輕等優點。其不足之處在於:
(1)輸出頻率范圍窄。
(2)工作頻段低時,虛假分量大,且頻率越髙,雜散分量越大。但對於中波來說,頻段在300KH〜3MHz,頻帶為2.7MHz,不寬,頻率也不髙。所以,採用DDS技術完全可行。至於如何提髙它的頻譜純度,可從如下幾個方面做文章:
①改善時鍾源的相位雜訊(由標頻決
定);
②提髙相位值的位數(由選用的DDS器件決定);
③提髙DAC的線性度和減少其雜散分
量;
④低通濾波器(LPF)的設計、電路板的布排上應避免耦合和分布參數。
4DDS部分具體設計圖
AD9830最高時鍾為50MHZ,根據奈奎斯特定律,理論上,AD9830的最高輸出頻率
為50X50%=25(MHz)。但實際上的最高輸出頻率為50X40%=20(MHz),正好適用於中波頻段。用AD9830作為頻合器的典型電路原理圖見圖4。



圖4頻合器的典型電路原理圖

每位
FREO<».1>^
PHASERI.<KL2.3>-(»
數棋SFREG<0>»fou織*2,2
FREO<J>-foi«»|/re*252PHASERKO<V0>-l)l:LTAHASE<0,1«2,3>
選擇數據淞設實丨.SELECTSETPSKUU^EU
6MCLKCYCLES的等待
DAC輸出


圖5AD9830內部程序流程圖
濾波器採用7階切比雪夫楠圓型低通濾波器,晶振採用標準的5M高精確度、髙穩定度、低相噪的溫補晶振,達10—數量級。電路說明:5M的標頻經過4倍頻得到20M標准信號,作為DDS系統的時鍾源,AD9830在中央CPU的控制下產生一個個的離散相位荇鞏、鬼敗熱資為別雜故"h焦故紙鴆後荇鞏。這些離散幅度序列經晶元內部DAC變換出模擬信號,最後經過一個5M的低通濾波器平滑處理,得到頻段為300KHz〜3MHz、間隔為100Hz的頻點信號。
AD9830將DAC集成在晶元內部,這樣省去了外接數模轉換器。可降低相位雜訊,提高頻譜純度。AD9830相位累加器為32位,正弦波形查找相位截取為16位,數字化波形截取為12位,DAC數據為10位。所以,可計算出頻率解析度Af=20MHz/232免0.0046566,相位雜訊下降為20X/g5/2=7.96dB,再經DDS處理,產生300K〜3MHz(稱為fg)的信號,相位雜訊改善為20X/g(fs/fg)=36.48dB〜16.48dB(£s為20M),綜合兩者,可算出輸出信號的相位雜訊比標頻改善了8.52〜28.52dB。該DDS內部程序流程如圖5所示。-激勵器的主要技術性能如下:
頻率范圍:300KH2〜3MHz頻率間隔:100Hz頻率准確度:5X10~8/
頻率穩定度:1X10_8/日
輸出幅度:在50D負載上輸出有效值
工作種類:一路下邊帶漢字或數據報邊帶響應:500〜900Hz內波動<0.5dB300〜3000Hz內波動<1.5dB載波抑制:>55dB三階互調失真:<—45dB無用邊帶抑制:>60dB諧波分量:二次諧波波動<_50dB
三次以上諧波波動<—55dB雜散抑制:>60dB
根據以上性能和功能要求,我們設計的激勵器可細劃為如下幾個部分:標頻源、直接式數字頻率合成器、控制系統、信號通道、信源處理以及供電系統等。具體系統原理如圖6所示:


圖6中,鍵盤的操作、頻點的選擇以及工作頻率方式的顯示等都由CPU統一管理,鍵盤採用輕觸薄膜開關鍵盤,用柔性線路板將引線引到鍵盤和顯示控制器上,顯示採用數碼或液晶顯示。由於80C52片內有4K的內部存儲器,故全部的控制及顯示程序可集中放到CPU的內部,也可外接EPROM。如程序放在CPU的內部,操作更簡潔、運行更安全、速度更快。缺點是硬體維修和軟體更改不方便。在軟體設計中,我們盡量避免死機和錯誤跳轉,在DDS演算法設計上,力求提高換頻時間和計算精度。其主程序和中斷子程序控制流程如圖7所示。

圖7(a)主程序流程圖


(b)中斷子程序流程圖

6結論
綜上所述,AD9830作為中波激勵或接收的頻合單元非常合適,即使在其它頻段(如短波、甚低頻、長波等),它也可以得到廣泛應用。

㈡ 雷達脈沖信號怎樣分析怎麼確定是屬於那種雷達信號

為准確測量脈沖串的特性,必須知道脈沖的頻率。在許多情況,會有一個系統參考信號可用以把RTSA的參考與被測試設備參考鎖定在一起。在這種情況,因測量工具和被測設備是鎖定在一起的,所以手動輸入頻率錯誤為零。當並不準確把握脈沖頻率時,RTSA利用三個用於頻率誤差估測的可選方法來確定RTSA的中心頻率和脈沖頻率之差。由用戶選定的方法取決於頻率和脈沖的相位特性。 雷達脈沖的頻率和相位特性可被定義為具有恆固相位、變化相位或線性調頻行為。在每種情況,每隔一段時間都對脈沖相位進行估算以確定來自測量相位的任何差異並藉助該差異來估算脈沖串和儀器中心頻率的頻率變化或誤差。可通過確定每個脈沖相對於參考信號相位的相位來估算固定相位脈動信號的頻率(如脈沖調制的CW信號)。利用被測信號的同相/正交(I/Q)表述來構建內置在RTSA內的信號處理演算法。相位是由I/Q波形計算的,其中: 相位(f)=arctan(Q/I) 然後用計算得來的每一脈沖相位計算相位差與時間的斜率,且還得到相對於分析儀頻率的頻率誤差。為優化當確定脈沖相位時由濾波產生的超調和震鈴效應,從每個脈沖50%處的中心進行I和Q采樣。 對頻率固定相位變化的信號(如開/關一個定頻振盪器)來說,脈沖間沒有簡單關系。也就是說,雖然脈沖的頻率一樣,但每個脈沖的相位卻不同。這樣,就必須確定每個脈沖頻率。通過確定每個脈沖對應於參考信號的相位斜率,有可能算出每個相位的頻率誤差。每個脈沖高電平中心處的50%用於該計算。然後對分析階段得出的全部脈沖頻率值進行平均以決定與測量頻率的頻率誤差。 對包含重復線性調頻變頻的信號來說,在脈沖高電平持續時間,相位以拋物線方式變化。這種情況,可通過為每一拋物線相位計算找出一個合適的線切來估算頻率誤差。 對先進雷達系統來說,脈沖與脈沖間的相位測量一般是個重要指標。伴隨著准確測試脈沖頻率的需要,脈沖與脈沖間的相位測量精度取決於如下4個關鍵因素:相噪、整個測量時間、脈沖邊沿定義和測量點以及信噪比(SNR)。被測信號自身及測量儀器的相噪都會影響測量精度。相噪帶來的不確定性由總體測量時間決定。例如,1ms測量時間將導致集成的集成相噪限制以相對於載頻約1kHz的偏置開始並擴展至測量帶寬。 可通過把參考脈沖和被測脈沖間間隔最小化的方式來獲得脈沖與脈沖間測量的更高穩定性。在准確脈沖測量中另一個重要因素是估算脈沖的上升沿到底在哪裡開始,及為了使脈沖震鈴消失它到底要持續多長時間。RF載頻的脈沖與脈沖間的相位測量是由到脈沖上升沿的確定偏移完成的。定義得不好或測得不準確的上升沿可導致與參考頻率不一致的偏移並惡化精度。當測量上升和下降沿時採用插值方法將有助於把該不確定性最小化。 確定相對於脈沖上升沿的測量點是有用的。為計算上升沿,脈沖-脈沖間任意點相位的測量精度都具體規定為應大於t = 10(測量帶寬)、無論從上升還是下降沿來算都一樣。例如,採用55 MHz測量濾波器的脈沖-脈沖間的相位測量在規范內,從脈沖的上升或下降沿來算,測量點大於10/(55 x 106),也即約為182 ns。 最後,在脈沖-脈沖測量中,SNR是個重要因素。高端RTSA的典型脈沖-脈沖間相位測量的不確定度在2GHz、20MHz帶寬時是1.7deg.、比110MHz帶寬下降了2.0deg.。在10GHz、20MHz帶寬時精度是3.2deg.,在110MHz帶寬時升至5deg.。

㈢ 相位和幅度的一致性對哪類雷達影響最大

事實上所有雷達都需要保證一定的幅相一致性,以使接收機工作在最佳狀態。但幅相一致性對單脈沖雷達影響最大,單脈沖技術主要用於精密跟蹤測量雷達中。單脈沖雷達採用振幅或相位和差式,接收機除了有和通道之外,還有若干個差通道及輔助通道,為了提高測量精度和實現伺服系統對目標的自動跟蹤,要求差通道的信號幅度、相位與和通道的保持一致。一般可以在雷達每一個目標處理周期之前的一段時內,向和差通道分別輸入測試或領示信號,以測量和差通道幅度、相位的誤差,經自動控制系統形成幅度和相位的控制信號,控制調整和差通道的信號幅度、相位,使和差通道信號幅度、相位的誤差變小,從而實現幅相一致性。可以參閱一下《雷達原理》和《精密測量跟蹤雷達技術》

熱點內容
java編譯器偽編譯指什麼 發布:2024-11-25 10:08:53 瀏覽:960
amax伺服器默認地址 發布:2024-11-25 10:07:20 瀏覽:317
甘肅省浪潮伺服器雲伺服器 發布:2024-11-25 10:07:17 瀏覽:521
android手環 發布:2024-11-25 10:03:55 瀏覽:162
如何將安卓機設置為蘋果機 發布:2024-11-25 09:41:24 瀏覽:969
伺服器屏蔽一段ip 發布:2024-11-25 08:52:06 瀏覽:100
售茶源碼 發布:2024-11-25 08:37:29 瀏覽:463
壓縮包改直鏈 發布:2024-11-25 08:34:33 瀏覽:611
安卓機的照片如何傳送到蘋果機上 發布:2024-11-25 08:32:48 瀏覽:917
手游伺服器怎麼找ip 發布:2024-11-25 08:23:10 瀏覽:752