問題匹配演算法
① 文本相似度匹配演算法
文本相似度匹配演算法是用於衡量兩段文本之間相似程度的演算法。
演算法介紹:
文本相似度匹配演算法主要用於衡量不同文本間的相似程度。在信息處理、自然語言處理等領域,這種演算法有著廣泛的應用,例如文本去重、智能推薦、問答系統等。其主要原理是通過一定的演算法計算兩個文本之間的相似度,返回一個表示相似程度的數值或分數。
主要演算法類型:
1. 基於關鍵詞的匹配演算法:這種演算法主要關注文本中出現的關鍵詞,通過比較關鍵詞及其出現頻率來判斷文本的相似度。例如,關鍵詞集合比對法、餘弦相似度等。
2. 基於語義的匹配演算法:考慮到文本的語義信息,這種演算法不僅關注關鍵詞的出現,還關注詞與詞之間的關系以及句子的語境。例如,使用詞向量技術來衡量詞與詞之間的關聯程度,或者基於深度學習的文本相似度模型等。這些方法可以更好地理解文本的深層含義。
3. 基於規則的匹配演算法:在一些特定場景下,人們會定義一些規則來匹配文本,如正則表達式等。這種方法對於具有固定模式的文本匹配非常有效。
演算法的應用場景:
文本相似度匹配演算法的應用非常廣泛。在搜索引擎中,它可以幫助判斷用戶查詢與網頁內容的相似度,實現更精準的搜索結果;在智能推薦系統中,它可以分析用戶興趣與商品描述的相似度,為用戶提供個性化的推薦;在版權檢測領域,它可以迅速識別抄襲或相似的內容。此外,該演算法還在機器翻譯、自動文摘等領域發揮著重要作用。
總的來說,文本相似度匹配演算法是自然語言處理中的一個核心任務,其應用廣泛且實用性強。隨著技術的不斷發展,該演算法在准確性、效率和適應性方面將不斷提升,為更多領域提供有力的技術支持。
② 有關匹配和排序的演算法,高手幫幫忙哈
一、插入排序(Insertion Sort)
1. 基本思想:
每次將一個待排序的數據元素,插入到前面已經排好序的數列中的適當位置,使數列依然有序;直到待排序數據元素全部插入完為止。
2. 排序過程:
【示例】:
[初始關鍵字] [49] 38 65 97 76 13 27 49
J=2(38) [38 49] 65 97 76 13 27 49
J=3(65) [38 49 65] 97 76 13 27 49
J=4(97) [38 49 65 97] 76 13 27 49
J=5(76) [38 49 65 76 97] 13 27 49
J=6(13) [13 38 49 65 76 97] 27 49
J=7(27) [13 27 38 49 65 76 97] 49
J=8(49) [13 27 38 49 49 65 76 97]
Procere InsertSort(Var R : FileType);
//對R[1..N]按遞增序進行插入排序, R[0]是監視哨//
Begin
for I := 2 To N Do //依次插入R[2],...,R[n]//
begin
R[0] := R[I]; J := I - 1;
While R[0] < R[J] Do //查找R[I]的插入位置//
begin
R[J+1] := R[J]; //將大於R[I]的元素後移//
J := J - 1
end
R[J + 1] := R[0] ; //插入R[I] //
end
End; //InsertSort //
二、選擇排序
1. 基本思想:
每一趟從待排序的數據元素中選出最小(或最大)的一個元素,順序放在已排好序的數列的最後,直到全部待排序的數據元素排完。
2. 排序過程:
【示例】:
初始關鍵字 [49 38 65 97 76 13 27 49]
第一趟排序後 13 〔38 65 97 76 49 27 49]
第二趟排序後 13 27 〔65 97 76 49 38 49]
第三趟排序後 13 27 38 [97 76 49 65 49]
第四趟排序後 13 27 38 49 [49 97 65 76]
第五趟排序後 13 27 38 49 49 [97 97 76]
第六趟排序後 13 27 38 49 49 76 [76 97]
第七趟排序後 13 27 38 49 49 76 76 [ 97]
最後排序結果 13 27 38 49 49 76 76 97
Procere SelectSort(Var R : FileType); //對R[1..N]進行直接選擇排序 //
Begin
for I := 1 To N - 1 Do //做N - 1趟選擇排序//
begin
K := I;
For J := I + 1 To N Do //在當前無序區R[I..N]中選最小的元素R[K]//
begin
If R[J] < R[K] Then K := J
end;
If K <>; I Then //交換R[I]和R[K] //
begin Temp := R[I]; R[I] := R[K]; R[K] := Temp; end;
end
End; //SelectSort //
三、冒泡排序(BubbleSort)
1. 基本思想:
兩兩比較待排序數據元素的大小,發現兩個數據元素的次序相反時即進行交換,直到沒有反序的數據元素為止。
2. 排序過程:
設想被排序的數組R〔1..N〕垂直豎立,將每個數據元素看作有重量的氣泡,根據輕氣泡不能在重氣泡之下的原則,從下往上掃描數組R,凡掃描到違反本原則的輕氣泡,就使其向上"漂浮",如此反復進行,直至最後任何兩個氣泡都是輕者在上,重者在下為止。
【示例】:
49 13 13 13 13 13 13 13
38 49 27 27 27 27 27 27
65 38 49 38 38 38 38 38
97 65 38 49 49 49 49 49
76 97 65 49 49 49 49 49
13 76 97 65 65 65 65 65
27 27 76 97 76 76 76 76
49 49 49 76 97 97 97 97
Procere BubbleSort(Var R : FileType) //從下往上掃描的起泡排序//
Begin
For I := 1 To N-1 Do //做N-1趟排序//
begin
NoSwap := True; //置未排序的標志//
For J := N - 1 DownTo 1 Do //從底部往上掃描//
begin
If R[J+1]< R[J] Then //交換元素//
begin
Temp := R[J+1]; R[J+1 := R[J]; R[J] := Temp;
NoSwap := False
end;
end;
If NoSwap Then Return//本趟排序中未發生交換,則終止演算法//
end
End; //BubbleSort//
四、快速排序(Quick Sort)
1. 基本思想:
在當前無序區R[1..H]中任取一個數據元素作為比較的"基準"(不妨記為X),用此基準將當前無序區劃分為左右兩個較小的無序區:R[1..I-1]和R[I+1..H],且左邊的無序子區中數據元素均小於等於基準元素,右邊的無序子區中數據元素均大於等於基準元素,而基準X則位於最終排序的位置上,即R[1..I-1]≤X.Key≤R[I+1..H](1≤I≤H),當R[1..I-1]和R[I+1..H]均非空時,分別對它們進行上述的劃分過程,直至所有無序子區中的數據元素均已排序為止。
2. 排序過程:
【示例】:
初始關鍵字 [49 38 65 97 76 13 27 49〕
第一次交換後 〔27 38 65 97 76 13 49 49〕
第二次交換後 〔27 38 49 97 76 13 65 49〕
J向左掃描,位置不變,第三次交換後 〔27 38 13 97 76 49 65 49〕
I向右掃描,位置不變,第四次交換後 〔27 38 13 49 76 97 65 49〕
J向左掃描 〔27 38 13 49 76 97 65 49〕
(一次劃分過程)
初始關鍵字 〔49 38 65 97 76 13 27 49〕
一趟排序之後 〔27 38 13〕 49 〔76 97 65 49〕
二趟排序之後 〔13〕 27 〔38〕 49 〔49 65〕76 〔97〕
三趟排序之後 13 27 38 49 49 〔65〕76 97
最後的排序結果 13 27 38 49 49 65 76 97
各趟排序之後的狀態
Procere Parttion(Var R : FileType; L, H : Integer; Var I : Integer);
//對無序區R[1,H]做劃分,I給以出本次劃分後已被定位的基準元素的位置 //
Begin
I := 1; J := H; X := R[I] ;//初始化,X為基準//
Repeat
While (R[J] >;= X) And (I < J) Do
begin
J := J - 1 //從右向左掃描,查找第1個小於 X的元素//
If I < J Then //已找到R[J] 〈X//
begin
R[I] := R[J]; //相當於交換R[I]和R[J]//
I := I + 1
end;
While (R[I] <= X) And (I < J) Do
I := I + 1 //從左向右掃描,查找第1個大於 X的元素///
end;
If I < J Then //已找到R[I] >; X //
begin R[J] := R[I]; //相當於交換R[I]和R[J]//
J := J - 1
end
Until I = J;
R[I] := X //基準X已被最終定位//
End; //Parttion //
Procere QuickSort(Var R :FileType; S,T: Integer); //對R[S..T]快速排序//
Begin
If S < T Then //當R[S..T]為空或只有一個元素是無需排序//
begin
Partion(R, S, T, I); //對R[S..T]做劃分//
QuickSort(R, S, I-1);//遞歸處理左區間R[S,I-1]//
QuickSort(R, I+1,T);//遞歸處理右區間R[I+1..T] //
end;
End; //QuickSort//
五、堆排序(Heap Sort)
1. 基本思想:
堆排序是一樹形選擇排序,在排序過程中,將R[1..N]看成是一顆完全二叉樹的順序存儲結構,利用完全二叉樹中雙親結點和孩子結點之間的內在關系來選擇最小的元素。
2. 堆的定義: N個元素的序列K1,K2,K3,...,Kn.稱為堆,當且僅當該序列滿足特性:
Ki≤K2i Ki ≤K2i+1(1≤ I≤ [N/2])
堆實質上是滿足如下性質的完全二叉樹:樹中任一非葉子結點的關鍵字均大於等於其孩子結點的關鍵字。例如序列10,15,56,25,30,70就是一個堆,它對應的完全二叉樹如上圖所示。這種堆中根結點(稱為堆頂)的關鍵字最小,我們把它稱為小根堆。反之,若完全二叉樹中任一非葉子結點的關鍵字均大於等於其孩子的關鍵字,則稱之為大根堆。
3. 排序過程:
堆排序正是利用小根堆(或大根堆)來選取當前無序區中關鍵字小(或最大)的記錄實現排序的。我們不妨利用大根堆來排序。每一趟排序的基本操作是:將當前無序區調整為一個大根堆,選取關鍵字最大的堆頂記錄,將它和無序區中的最後一個記錄交換。這樣,正好和直接選擇排序相反,有序區是在原記錄區的尾部形成並逐步向前擴大到整個記錄區。
【示例】:對關鍵字序列42,13,91,23,24,16,05,88建堆
Procere Sift(Var R :FileType; I, M : Integer);
//在數組R[I..M]中調用R[I],使得以它為完全二叉樹構成堆。事先已知其左、右子樹(2I+1 <=M時)均是堆//
Begin
X := R[I]; J := 2*I; //若J <=M, R[J]是R[I]的左孩子//
While J <= M Do //若當前被調整結點R[I]有左孩子R[J]//
begin
If (J < M) And R[J].Key < R[J+1].Key Then
J := J + 1 //令J指向關鍵字較大的右孩子//
//J指向R[I]的左、右孩子中關鍵字較大者//
If X.Key < R[J].Key Then //孩子結點關鍵字較大//
begin
R[I] := R[J]; //將R[J]換到雙親位置上//
I := J ; J := 2*I //繼續以R[J]為當前被調整結點往下層調整//
end;
Else
Exit//調整完畢,退出循環//
end
R[I] := X;//將最初被調整的結點放入正確位置//
End;//Sift//
Procere HeapSort(Var R : FileType); //對R[1..N]進行堆排序//
Begin
For I := N Div Downto 1 Do //建立初始堆//
Sift(R, I , N)
For I := N Downto 2 do //進行N-1趟排序//
begin
T := R[1]; R[1] := R[I]; R[I] := T;//將當前堆頂記錄和堆中最後一個記錄交換//
Sift(R, 1, I-1) //將R[1..I-1]重成堆//
end
End; //HeapSort//
六、幾種排序演算法的比較和選擇
1. 選取排序方法需要考慮的因素:
(1) 待排序的元素數目n;
(2) 元素本身信息量的大小;
(3) 關鍵字的結構及其分布情況;
(4) 語言工具的條件,輔助空間的大小等。
2. 小結:
(1) 若n較小(n <= 50),則可以採用直接插入排序或直接選擇排序。由於直接插入排序所需的記錄移動操作較直接選擇排序多,因而當記錄本身信息量較大時,用直接選擇排序較好。
(2) 若文件的初始狀態已按關鍵字基本有序,則選用直接插入或冒泡排序為宜。
(3) 若n較大,則應採用時間復雜度為O(nlog2n)的排序方法:快速排序、堆排序或歸並排序。 快速排序是目前基於比較的內部排序法中被認為是最好的方法。
(4) 在基於比較排序方法中,每次比較兩個關鍵字的大小之後,僅僅出現兩種可能的轉移,因此可以用一棵二叉樹來描述比較判定過程,由此可以證明:當文件的n個關鍵字隨機分布時,任何藉助於"比較"的排序演算法,至少需要O(nlog2n)的時間。
(5) 當記錄本身信息量較大時,為避免耗費大量時間移動記錄,可以用鏈表作為存儲結構。
③ 正向最大匹配演算法是怎樣分詞的
使用正向最大匹配演算法給一個長句子分詞的順序應該如下:
1、從句子的開頭開始掃描,取出最長的匹配詞作為分詞結果。
2、將掃描指針移動至已經分詞的末尾,繼續掃描未分詞的文本,重復步驟1,直至掃描完整個句子。
需要注意的是,正向最大匹配演算法可能會存在歧義和錯誤切分的情況,因此在實際應用中常常需要結合其他演算法進行糾錯和優化。
3、處理未登錄詞:未登錄詞指詞典中沒有收錄的新詞或專有名詞等。在正向最大匹配演算法中,未登錄詞可能會被切分成幾個部分。因此,需要採用其他方法來處理未登錄詞,例如基於統計模型的分詞演算法。
4、解決歧義:正向最大匹配演算法可能會遇到歧義問題,例如「北京大學生命科學學院」,可以分為「北京大學/生命科學/學院」和「北京/大學生命科學學院」兩種切分結果。可以採用規則集、統計模型等方式解決歧義問題。
總而言之,正向最大匹配演算法是一種簡單有效的分詞演算法,但也存在一些局限性和問題,需要根據實際需求和情況進行調整和優化。
④ sift演算法是什麼
Sift演算法是David Lowe於1999年提出的局部特徵描述子,並於2004年進行了更深入的發展和完善。Sift特徵匹配演算法可以處理兩幅圖像之間發生平移、旋轉、仿射變換情況下的匹配問題,具有很強的匹配能力。
這一演算法的靈感也十分的直觀,人眼觀測兩張圖片是否匹配時會注意到其中的典型區域(特徵點部分),如果我們能夠實現這一特徵點區域提取過程,再對所提取到的區域進行描述就可以實現特徵匹配了。
sift演算法的應用
SIFT演算法目前在軍事、工業和民用方面都得到了不同程度的應用,其應用已經滲透了很多領域,典型的應用如下:物體識別;機器人定位與導航;圖像拼接;三維建模;手勢識別;視頻跟蹤;筆記鑒定;指紋與人臉識別;犯罪現場特徵提取。