當前位置:首頁 » 操作系統 » 網格簡化演算法

網格簡化演算法

發布時間: 2024-08-01 03:40:39

❶ 求VC++生成地形源碼,其中地形網格由delaunay演算法生成,利用基於視點的邊折疊演算法進行簡化。

// 動態構建按鈕代碼
CButton* pNewButton = new CButton();// 也可以定義為類的成員變數。
CRect rcButton( 10, 10, 50, 30); // 按鈕在對話框中的位置。
pNewButton->Create("按鈕", 0, rcButton, this, 10098);
pNewButton->ShowWindow(SW_SHOW);

// 添加按鈕消息代碼。
重載對話框的 WindowProc 消息處理函數
加如下代碼——這個要實現添加
if ( WM_COMMAND== message )
{
WORD wID = LOWORD(wParam);
if ( 10098 == wID)
{
CDC* pDC = GetDC();
pDC->TextOut( 100, 100, "文字");
ReleaseDC(pdc);
}
}

❷ 常見的數學模型有哪些

1、生物學數學模型

2、醫學數學模型

3、地質學數學模型

4、氣象學數學模型

5、經濟學數學模型

6、社會學數學模型

7、物理學數學模型

8、化學數學模型

9、天文學數學模型

10、工程學數學模型

11、管理學數學模型

(2)網格簡化演算法擴展閱讀

數學模型的歷史可以追溯到人類開始使用數字的時代。隨著人類使用數字,就不斷地建立各種數學模型,以解決各種各樣的實際問題。

數學模型這種數學結構是藉助於數學符號刻劃出來的某種系統的純關系結構。從廣義理解,數學模型包括數學中的各種概念,各種公式和各種理論。

因為它們都是由現實世界的原型抽象出來的,從這意義上講,整個數學也可以說是一門關於數學模型的科學。從狹義理解,數學模型只指那些反映了特定問題或特定的具體事物系統的數學關系結構,這個意義上也可理解為聯系一個系統中各變數間內的關系的數學表達。

❸ 計算機視覺——典型的目標檢測演算法(Fast R-CNN演算法)(五)

【嵌牛導讀】目標檢測在現實中的應用很廣泛,我們需要檢測數字圖像中的物體位置以及類別,它需要我們構建一個模型,模型的輸入一張圖片,模型的輸出需要圈出圖片中所有物體的位置以及物體所屬的類別。在深度學習浪潮到來之前,目標檢測精度的進步十分緩慢,靠傳統依靠手工特徵的方法來提高精度已是相當困難的事。而ImageNet分類大賽出現的卷積神經網路(CNN)——AlexNet所展現的強大性能,吸引著學者們將CNN遷移到了其他的任務,這也包括著目標檢測任務,近年來,出現了很多目標檢測演算法。

【嵌牛鼻子】計算機視覺

【嵌牛提問】如何理解目標檢測演算法——Fast R-CNN

【嵌牛正文】

        為克服SPP-Net 存衡基在的問題,2015 年Girshick 等提出基於邊界框和多任務損失分類的Fast R-CNN[31]演算法。該演算法將SPP 層簡化,設計出單尺度的ROI Pooling 池化層結構;將整張圖像的候選區域采樣成固定大小,生成特徵圖後作SVD分解,通過RoI Pooling層得到Softmax的分類得分和BoundingBox 外接矩形框的窗口回歸兩個向量;用Softmax 代替SVM 提出多任務損失函數思想,將深度網路和SVM分類兩個階段整合,即將分類問題和邊框回歸問題進行合並。

演算法詳解:

Fast R-CNN的流程圖如下,網路有兩個輸入: 圖像和對應的region proposal 。其中region proposal由selective search方法得到,沒有表示在流程圖中。對每個類別都訓練一個回歸器,且只有非背景的region proposal才需要進行回歸。

ROI pooling:ROI Pooling的作用是對不同大小的region proposal,從最後卷積層輸出的feature map提取大小固定的feature map。簡單講可以看做是SPPNet的簡化版本,因為全連接層的輸入需要尺寸大小一樣,所以不能直接將不同大小的region proposal映射到feature map作為輸出,需要做尺寸變換。在文章中,VGG16網路使用搭中H=W=7的參數,即將一個h*w的region proposal分割成H*W大小的網格,然後知攔山將這個region proposal映射到最後一個卷積層輸出的feature map,最後計算每個網格里的最大值作為該網格的輸出,所以不管ROI pooling之前的feature map大小是多少,ROI pooling後得到的feature map大小都是H*W。

因此可以看出Fast RCNN主要有3個改進:1、卷積不再是對每個region proposal進行,而是直接對整張圖像,這樣減少了很多重復計算。原來RCNN是對每個region proposal分別做卷積,因為一張圖像中有2000左右的region proposal,肯定相互之間的重疊率很高,因此產生重復計算。2、用ROI pooling進行特徵的尺寸變換,因為全連接層的輸入要求尺寸大小一樣,因此不能直接把region proposal作為輸入。3、將regressor放進網路一起訓練,每個類別對應一個regressor,同時用softmax代替原來的SVM分類器。

在實際訓練中,每個mini-batch包含2張圖像和128個region proposal(或者叫ROI),也就是每張圖像有64個ROI。然後從這些ROI中挑選約25%的ROI,這些ROI和ground truth的IOU值都大於0.5。另外只採用隨機水平翻轉的方式增加數據集。

測試的時候則每張圖像大約2000個ROI。

損失函數的定義是將分類的loss和回歸的loss整合在一起,其中分類採用log loss,即對真實分類(下圖中的pu)的概率取負log,而回歸的loss和R-CNN基本一樣。分類層輸出K+1維,表示K個類和1個背景類。

這是回歸的loss,其中t^u表示預測的結果,u表示類別。v表示真實的結果,即bounding box regression target。

採用SVD分解改進全連接層。如果是一個普通的分類網路,那麼全連接層的計算應該遠不及卷積層的計算,但是針對object detection,Fast RCNN在ROI pooling後每個region proposal都要經過幾個全連接層,這使得全連接層的計算占網路的計算將近一半,如下圖,所以作者採用SVD來簡化全連接層的計算。另一篇博客鏈接講的R-FCN網路則是對這個全連接層計算優化的新的演算法。

稍微總結下訓練和測試的結構,如下面兩個圖,對演算法的理解會更清晰。

test結構圖在ROI Pooling層是怎麼輸出的畫得比較容易理解。

❹ 數學建模需要掌握哪些編程語言和技術

數學建模應當掌握的十類演算法及所需編程語言:
1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)。
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具)。
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、 Lingo軟體實現)。
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉及到圖論的問題可以用這些方法解決,需要認真准備)。
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計中比較常用的方法,很多場合可以用到競賽中)。
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實現比較困難,需慎重使用)。
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具)。
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的)。
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用)。
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab進行處理)。

熱點內容
王者榮耀如何給賬號設置密碼 發布:2024-11-25 17:36:48 瀏覽:759
以巧克力為主寫一篇腳本 發布:2024-11-25 17:16:59 瀏覽:335
資料庫課時 發布:2024-11-25 16:57:50 瀏覽:451
dns伺服器名稱地址 發布:2024-11-25 16:57:49 瀏覽:932
如何給監控加訪問密碼 發布:2024-11-25 16:45:13 瀏覽:601
國外安卓音樂播放器哪個好 發布:2024-11-25 16:35:58 瀏覽:143
我的世界伺服器增加粒子 發布:2024-11-25 16:28:29 瀏覽:718
帶內核的安卓x86是什麼意思 發布:2024-11-25 16:27:01 瀏覽:273
php了解 發布:2024-11-25 16:16:26 瀏覽:934
個人搭建伺服器要錢不 發布:2024-11-25 16:06:56 瀏覽:832