當前位置:首頁 » 操作系統 » 數據挖掘演算法十大演算法

數據挖掘演算法十大演算法

發布時間: 2024-07-29 23:56:25

⑴ 數據挖掘演算法有哪些

以下主要是常見的10種數據挖掘的演算法,數據挖掘分為:分類(Logistic回歸模型、神經網路、支持向量機等)、關聯分析、聚類分析、孤立點分析。每一大類下都有好幾種演算法,這個具體可以參考數據挖掘概論這本書(英文最新版)

⑵ 數據挖掘十大經典演算法及各自優勢

數據挖掘十大經典演算法及各自優勢

不僅僅是選中的十大演算法,其實參加評選的18種演算法,實際上隨便拿出一種來都可以稱得上是經典演算法,它們在數據挖掘領域都產生了極為深遠的影響。
1. C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;2) 在樹構造過程中進行剪枝;3) 能夠完成對連續屬性的離散化處理;4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。
2. The k-means algorithm 即K-Means演算法
k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。
3. Support vector machines
支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假 定平行超平面間的距離或差距越大,分類器的總誤差越小。一個極好的指南是C.J.C Burges的《模式識別支持向量機指南》。van der Walt 和 Barnard 將支持向量機和其他分類器進行了比較。
4. The Apriori algorithm
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。
5. 最大期望(EM)演算法
在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然 估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variabl)。最大期望經常用在機器學習和計算機視覺的數據集聚(Data Clustering)領域。
6. PageRank
PageRank是Google演算法的重要內容。2001年9月被授予美國專利,專利人是Google創始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指網頁,而是指佩奇,即這個等級方法是以佩奇來命名的。
PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票, 被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」——衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自 學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。
7. AdaBoost
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器 (強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權 值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。
8. kNN: k-nearest neighbor classification
K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。
9. Naive Bayes
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。 樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以 及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。 但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬 性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。10. CART: 分類與回歸樹
CART, Classification and Regression Trees。 在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。

以上是小編為大家分享的關於數據挖掘十大經典演算法及各自優勢的相關內容,更多信息可以關注環球青藤分享更多干貨

⑶ 大數據挖掘的演算法有哪些

大數據挖掘的演算法:
1.樸素貝葉斯,超級簡單,就像做一些數數的工作。如果條件獨立假設成立的話,NB將比鑒別模型收斂的更快,所以你只需要少量的訓練數據。即使條件獨立假設不成立,NB在實際中仍然表現出驚人的好。
2. Logistic回歸,LR有很多方法來對模型正則化。比起NB的條件獨立性假設,LR不需要考慮樣本是否是相關的。與決策樹與支持向量機不同,NB有很好的概率解釋,且很容易利用新的訓練數據來更新模型。如果你想要一些概率信息或者希望將來有更多數據時能方便的更新改進模型,LR是值得使用的。
3.決策樹,DT容易理解與解釋。DT是非參數的,所以你不需要擔心野點(或離群點)和數據是否線性可分的問題,DT的主要缺點是容易過擬合,這也正是隨機森林等集成學習演算法被提出來的原因。
4.支持向量機,很高的分類正確率,對過擬合有很好的理論保證,選取合適的核函數,面對特徵線性不可分的問題也可以表現得很好。SVM在維數通常很高的文本分類中非常的流行。

如果想要或許更多更詳細的訊息,建議您去參加CDA數據分析課程。大數據分析師現在有專業的國際認證證書了,CDA,即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證, 旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。 「CDA 數據分析師」具體指在互聯網、金融、零售、咨詢、電信、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、 提供決策的新型數據分析人才。點擊預約免費試聽課。

⑷ 數據挖掘十大經典演算法之樸素貝葉斯

樸素貝葉斯,它是一種簡單但極為強大的預測建模演算法。之所以稱為樸素貝葉斯,**是因為它假設每個輸入變數是獨立的。**這個假設很硬,現實生活中根本不滿足,但是這項技術對於絕大部分的復雜問題仍然非常有效。

貝葉斯原理、貝葉斯分類和樸素貝葉斯這三者之間是有區別的。

貝葉斯原理是最大的概念,它解決了概率論中「逆向概率」的問題,在這個理論基礎上,人們設計出了貝葉斯分類器,樸素貝葉斯分類是貝葉斯分類器中的一種,也是最簡單,最常用的分類器。樸素貝葉斯之所以樸素是因為它假設屬性是相互獨立的,因此對實際情況有所約束,**如果屬性之間存在關聯,分類准確率會降低。**不過好在對於大部分情況下,樸素貝葉斯的分類效果都不錯。

樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換而言之樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。

樸素貝葉斯分類 常用於文本分類 ,尤其是對於英文等語言來說,分類效果很好。它常用於垃圾文本過濾、情感預測、推薦系統等。

1、 需要知道先驗概率 

先驗概率是計算後驗概率的基礎。在傳統的概率理論中,先驗概率可以由大量的重復實驗所獲得的各類樣本出現的頻率來近似獲得,其基礎是「大數定律」,這一思想稱為「頻率主義」。而在稱為「貝葉斯主義」的數理統計學派中,他們認為時間是單向的,許多事件的發生不具有可重復性,因此先驗概率只能根據對置信度的主觀判定來給出,也可以說由「信仰」來確定。 

2、按照獲得的信息對先驗概率進行修正 

在沒有獲得任何信息的時候,如果要進行分類判別,只能依據各類存在的先驗概率,將樣本劃分到先驗概率大的一類中。而在獲得了更多關於樣本特徵的信息後,可以依照貝葉斯公式對先驗概率進行修正,得到後驗概率,提高分類決策的准確性和置信度。 

3、分類決策存在錯誤率 

由於貝葉斯分類是在樣本取得某特徵值時對它屬於各類的概率進行推測,並無法獲得樣本真實的類別歸屬情況,所以分類決策一定存在錯誤率,即使錯誤率很低,分類錯誤的情況也可能發生。 

第一階段:准備階段

在這個階段我們需要確定特徵屬性,同時明確預測值是什麼。並對每個特徵屬性進行適當劃分,然後由人工對一部分數據進行分類,形成訓練樣本。

第二階段:訓練階段

這個階段就是生成分類器,主要工作是 計算每個類別在訓練樣本中的出現頻率 及 每個特徵屬性劃分對每個類別的條件概率。

第三階段:應用階段

這個階段是使用分類器對新數據進行分類。

優點:

(1)樸素貝葉斯模型發源於古典數學理論,有穩定的分類效率。

(2)對小規模的數據表現很好,能個處理多分類任務,適合增量式訓練,尤其是數據量超出內存時,我們可以一批批的去增量訓練。

(3)對缺失數據不太敏感,演算法也比較簡單,常用於文本分類。

缺點:

(1)理論上,樸素貝葉斯模型與其他分類方法相比具有最小的誤差率。但是實際上並非總是如此,這是因為樸素貝葉斯模型給定輸出類別的情況下,假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,在屬性個數比較多或者屬性之間相關性較大時,分類效果不好。而在屬性相關性較小時,樸素貝葉斯性能最為良好。對於這一點,有半樸素貝葉斯之類的演算法通過考慮部分關聯性適度改進。

(2)需要知道先驗概率,且先驗概率很多時候取決於假設,假設的模型可以有很多種,因此在某些時候會由於假設的先驗模型的原因導致預測效果不佳。

(3)由於我們是通過先驗和數據來決定後驗的概率從而決定分類,所以分類決策存在一定的錯誤率。

(4)對輸入數據的表達形式很敏感。

參考:

https://blog.csdn.net/qiu__liao/article/details/90671932

https://blog.csdn.net/u011067360/article/details/24368085

熱點內容
越容易壓縮 發布:2025-01-13 07:37:37 瀏覽:557
ecstore資料庫 發布:2025-01-13 07:29:43 瀏覽:296
手機設置密碼忘記了怎麼解開 發布:2025-01-13 07:28:29 瀏覽:20
存儲卡交流 發布:2025-01-13 07:16:06 瀏覽:984
php字元串浮點數 發布:2025-01-13 07:15:28 瀏覽:998
python排序cmp 發布:2025-01-13 07:09:04 瀏覽:72
雲腳本精靈 發布:2025-01-13 07:03:27 瀏覽:619
高維訪問 發布:2025-01-13 07:03:23 瀏覽:976
保衛蘿卜有腳本嗎 發布:2025-01-13 06:30:29 瀏覽:743
天貓上傳 發布:2025-01-13 06:06:35 瀏覽:156