點跟蹤演算法
A. 計算機視覺中,目前有哪些經典的目標跟蹤演算法
跟蹤是一個很混亂的方向。
比如TLD、CT、Struct這些效果不錯的Tracker其實都不是單純的Tracker了。09年的時候我記得比較流行的是Particle Filtering, 或者一些MeanShift/CamShift的變形,比如特徵變了,比如對問題的假設變了。
後來突然出現一些tracking by detection的方法,之前的很多朋友就覺得這是耍流氓。比如TLD,嚴格的跟蹤演算法也許只是裡面的Forward/Backward Opitcal Flow的部分,但是效果很Impressive,所以不管怎樣,一下就火了。
之後所謂的跟蹤就不再是一個傳統的跟蹤問題,而是一個綜合的工程問題。online learning,random projection ,sparse learning的東西都加進來,大家其實到底是在做跟蹤還是在做檢測或者online learning,其實已經不重要,因為衡量的標準是你在某些public dataset上的精度。
但這些對實際的項目有沒有幫助呢?
這是個很有意思的地方,在很多時候,我們之所以需要跟蹤演算法,是因為我們的檢測演算法很慢,跟蹤很快。基本上當前排名前幾的跟蹤演算法都很難用在這樣的情況下,因為你實際的速度已經太慢了,比如TLD,CT,還有Struct,如果目標超過十個,基本上就炸了。況且還有些跟蹤演算法自己drift掉了也不知道,比如第一版本的CT是無法處理drift的問題的,TLD是可以的,究其原因還是因為檢測演算法比較魯棒啊……
實際中我覺得速度極快,實現也簡單的純跟蹤演算法居然是NCC和Overlap。
NCC很簡單,這個是對點進行的,對於區域也有很多變種,網上有一些相關的資源。
Overlap是我取的名字,一般用在裡面,假如你的攝像頭是靜止的,背景建模之後出來的前景可以是一個一個的blob,對相鄰兩幀的blob檢測是否Overlap就可以得到track。在一些真實場景下,這個演算法是非常有效的。關於背景template的問題在真實的裡面也是很好解決的。
坐在電腦前面調試代碼tuning 各種閾值讓跟蹤演算法在某一個幀下面不要drift的事情我是再也不想幹了。
順祝你2015幸福快樂。
B. 自動跟蹤的跟蹤演算法
質心跟蹤演算法:這種跟蹤方式用於跟蹤有界目標,且目標與環境相比有明顯不同灰度等級,如空中飛機等。目標完全包含在鏡頭視場范圍內。
相關跟蹤演算法:相關可用來跟蹤多種類型的目標,當跟蹤目標無邊界且動態不是很強時這種方式非常有效。典型應用於:目標在近距離的范圍,且目標擴展到鏡頭視場范圍外,如航行在大海中的一艘船。
相位相關演算法:相位相關演算法是非常通用的演算法,既可以用來跟蹤無界目標也可以用來跟蹤有界目標。在復雜環境下(如地面的汽車)能給出一個好的效果。
多目標跟蹤演算法:多目標跟蹤用於有界目標如飛機、地面汽車等。它們完全在跟蹤窗口內。對復雜環境里的小目標跟蹤,本演算法能給出一個較好的性能。
邊緣跟蹤演算法:當跟蹤目標有一個或多個確定的邊緣而同時卻又具有不確定的邊緣,這時邊緣跟蹤是最有效的演算法。典型如火箭發射,它有確定好的前邊緣,但尾邊緣由於噴氣而不定。
場景鎖定演算法:該演算法專門用於復雜場景的跟蹤。適合於空對地和地對地場景。這個演算法跟蹤場景中的多個目標,然後依據每個點的運動,從而估計整個場景全局運動,場景中的目標和定位是自動選擇的。當存在跟蹤點移動到攝像機視場外時,新的跟蹤點能自動被標識。瞄準點初始化到場景中的某個點,跟蹤啟動,同時定位瞄準線。在這種模式下,能連續跟蹤和報告場景里的目標的位置。
組合跟蹤演算法:顧名思義這種跟蹤方式是兩種具有互補特性的跟蹤演算法的組合:相關類演算法 + 質心類演算法。它適合於目標尺寸、表面、特徵改變很大的場景。
C. 控制演算法系列 純跟蹤控制
純跟蹤演算法(Pure Pursuit)是一種傳統且經典的車輛橫向運動控制演算法,其基本思想是在每個控制周期,通過前方目標軌跡上的一個點態則,指導當前方向盤的動作,使車輛車產生向目標點的運動。
純跟蹤演算法重要的參數在於前視距離系數,一般而言,其前視距離與速度正相關。
以下圖為例,跟蹤目標為藍色軌跡,車輛初始位置為綠色圓點。恆定跟蹤速度2m/s。
由以上示例可以看出,純跟蹤演算法收到前視距離的影響很大。
在實際應用過程中,除了跟蹤數據調整預瞄系數,其還和軌跡類型強相關。
總結一下純跟蹤的一些特點:
(1)要求軌跡多幀連續性好,因預瞄的笑敬特性無法對變化軌跡(尤其是預瞄距碰閉慎離內)進行響應;
(2)要求軌跡性能穩定,因為標定系數是按照軌跡性能進行標定的,如果軌跡性能變化,可能導致車輛轉彎內切等現象;
D. 目標跟蹤都有那些演算法
目標跟蹤,利用相鄰兩幀的區域匹配從圖像序列中建立目標鏈,跟蹤目標從進入監視范圍到駛離監視范圍的整個過程。首稱要確定匹配准則。常用的圖像匹配方法有Hausdorff距離區域法和圖像互相關。