當前位置:首頁 » 操作系統 » 機器人的演算法研究

機器人的演算法研究

發布時間: 2022-02-14 20:43:41

Ⅰ 機器人位置控制演算法原理是什麼,為什麼這么設計就能

大概所有控制的框架都是給定和反饋產生誤差並處理然後執行影響被控量,這么說肯定是有點暈了。換種說法吧,毛主席說,革命的首要問題就是要分清楚說是敵人和什麼來著。對所有的控制來說,首要問題就是搞清楚,你要控制的物理量是什麼(被控量)?你通過什麼物理量(控制量)來影響被控量。然後由此才有採用開環,閉環之類的。位置控制和其它所有控制比起來也沒什麼特殊的,對工業機器人而言,就是機器人末端在三維空間的位置(姿態先忽略)。那麼位置是被控量,控制量就是各個關節的位置,因為可以通過各個關節的位置來影響這個位置(被控量)至於控制的演算法,就有很多了,基本都是對誤差的處理,最常用的大概就是PID了。

Ⅱ 1 人工智慧的研究領域具體包含哪些是機器人和演算法嗎還有沒有其他

人工智慧(Artificial Intelligence) ,英文縮寫為AI。它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。 人工智慧是計算機科學的一個分支,它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。「人工智慧」一詞最初是在1956 年Dartmouth學會上提出的。從那以後,研究者們發展了眾多理論和原理,人工智慧的概念也隨之擴展。人工智慧是一門極富挑戰性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智慧是包括十分廣泛的科學,它由不同的領域組成,如機器學習,計算機視覺等等,總的說來,人工智慧研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。但不同的時代、不同的人對這種「復雜工作」的理解是不同的。例如繁重的科學和工程計算本來是要人腦來承擔的,現在計算機不但能完成這種計算, 而且能夠比人腦做得更快、更准確,因之當代人已不再把這種計算看作是「需要人類智能才能完成的復雜任務」, 可見復雜工作的定義是隨著時代的發展和技術的進步而變化的, 人工智慧這門科學的具體目標也自然隨著時代的變化而發展。它一方面不斷獲得新的進展,一方面又轉向更有意義、更加困難的目標。目前能夠用來研究人工智慧的主要物質手段以及能夠實現人工智慧技術的機器就是計算機, 人工智慧的發展歷史是和計算機科學與技術的發展史聯系在一起的。除了計算機科學以外, 人工智慧還涉及資訊理論、控制論、自動化、仿生學、生物學、心理學、數理邏輯、語言學、醫學和哲學等多門學科。人工智慧學科研究的主要內容包括:知識表示、自動推理和搜索方法、機器學習和知識獲取、知識處理系統、自然語言理解、計算機視覺、智能機器人、自動程序設計等方面。
[編輯本段]【人工和智能】
人工智慧的定義可以分為兩部分,即「人工」和「智能」。「人工」比較好理解,爭議性也不大。有時我們會要考慮什麼是人力所能及製造的,或著人自身的智能程度有沒有高到可以創造人工智慧的地步,等等。但總的來說,「人工系統」就是通常意義下的人工系統。
關於什麼是「智能」,就問題多多了。這涉及到其它諸如意識(consciousness)、自我(self)、思維(mind)(包括無意識的思維(unconscious_mind)等等問題。人唯一了解的智能是人本身的智能,這是普遍認同的觀點。但是我們對我們自身智能的理解都非常有限,對構成人的智能的必要元素也了解有限,所以就很難定義什麼是「人工」製造的「智能」了。因此人工智慧的研究往往涉及對人的智能本身的研究。其它關於動物或其它人造系統的智能也普遍被認為是人工智慧相關的研究課題。
人工智慧目前在計算機領域內,得到了愈加廣泛的重視。並在機器人,經濟政治決策,控制系統,模擬系統中得到應用。
[編輯本段]【人工智慧的定義】
著名的美國斯坦福大學人工智慧研究中心尼爾遜教授對人工智慧下了這樣一個定義:「人工智慧是關於知識的學科――怎樣表示知識以及怎樣獲得知識並使用知識的科學。」而另一個美國麻省理工學院的溫斯頓教授認為:「人工智慧就是研究如何使計算機去做過去只有人才能做的智能工作。」這些說法反映了人工智慧學科的基本思想和基本內容。即人工智慧是研究人類智能活動的規律,構造具有一定智能的人工系統,研究如何讓計算機去完成以往需要人的智力才能勝任的工作,也就是研究如何應用計算機的軟硬體來模擬人類某些智能行為的基本理論、方法和技術。
人工智慧(Artificial Intelligence,簡稱AI)是計算機學科的一個分支,二十世紀七十年代以來被稱為世界三大尖端技術之一(空間技術、能源技術、人工智慧)。也被認為是二十一世紀(基因工程、納米科學、人工智慧)三大尖端技術之一。這是因為近三十年來它獲得了迅速的發展,在很多學科領域都獲得了廣泛應用,並取得了豐碩的成果,人工智慧已逐步成為一個獨立的分支,無論在理論和實踐上都已自成一個系統。
人工智慧是研究使計算機來模擬人的某些思維過程和智能行為(如學習、推理、思考、規劃等)的學科,主要包括計算機實現智能的原理、製造類似於人腦智能的計算機,使計算機能實現更高層次的應用。人工智慧將涉及到計算機科學、心理學、哲學和語言學等學科。可以說幾乎是自然科學和社會科學的所有學科,其范圍已遠遠超出了計算機科學的范疇,人工智慧與思維科學的關系是實踐和理論的關系,人工智慧是處於思維科學的技術應用層次,是它的一個應用分支。從思維觀點看,人工智慧不僅限於邏輯思維,要考慮形象思維、靈感思維才能促進人工智慧的突破性的發展,數學常被認為是多種學科的基礎科學,數學也進入語言、思維領域,人工智慧學科也必須借用數學工具,數學不僅在標准邏輯、模糊數學等范圍發揮作用,數學進入人工智慧學科,它們將互相促進而更快地發展。
[編輯本段]【實際應用】
機器視覺:指紋識別,人臉識別,視網膜識別,虹膜識別,掌紋識別,專家系統,智能搜索,定理證明,博弈,自動程序設計,還有航天應用等。
[編輯本段]【學科範疇】
人工智慧是一門邊沿學科,屬於自然科學和社會科學的交叉。
[編輯本段]【涉及學科】
哲學和認知科學,數學,神經生理學,心理學,計算機科學,資訊理論,控制論,不定性論,仿生學,
[編輯本段]【研究范疇】
自然語言處理,知識表現,智能搜索,推理,規劃,機器學習,知識獲取,組合調度問題,感知問題,模式識別,邏輯程序設計,軟計算,不精確和不確定的管理,人工生命,神經網路,復雜系統,遺傳演算法
[編輯本段]【應用領域】
智能控制,機器人學,語言和圖像理解,遺傳編程
[編輯本段]【意識和人工智慧的區別】
人工智慧就其本質而言,是對人的思維的信息過程的模擬。
對於人的思維模擬可以從兩條道路進行,一是結構模擬,仿照人腦的結構機制,製造出「類人腦」的機器;二是功能模擬,暫時撇開人腦的內部結構,而從其功能過程進行模擬。現代電子計算機的產生便是對人腦思維功能的模擬,是對人腦思維的信息過程的模擬。
人工智慧不是人的智能,更不會超過人的智能。
「機器思維」同人類思維的本質區別:
1.人工智慧純系無意識的機械的物理的過程,人類智能主要是生理和心理的過程。
2.人工智慧沒有社會性。
3.人工智慧沒有人類的意識所特有的能動的創造能力。
4.兩者總是人腦的思維在前,電腦的功能在後。
[編輯本段]【強人工智慧和弱人工智慧】
人工智慧的一個比較流行的定義,也是該領域較早的定義,是由約翰·麥卡錫(John McCarthy|)在1956年的達特矛斯會議(Dartmouth Conference)上提出的:人工智慧就是要讓機器的行為看起來就象是人所表現出的智能行為一樣。但是這個定義似乎忽略了強人工智慧的可能性(見下)。另一個定義指人工智慧是人造機器所表現出來的智能性。總體來講,目前對人工智慧的定義大多可劃分為四類,即機器「像人一樣思考」、「像人一樣行動」、「理性地思考」和「理性地行動」。這里「行動」應廣義地理解為採取行動,或制定行動的決策,而不是肢體動作。
強人工智慧
強人工智慧觀點認為有可能製造出真正能推理(Reasoning)和解決問題(Problem_solving)的智能機器,並且,這樣的機器能將被認為是有知覺的,有自我意識的。強人工智慧可以有兩類:
類人的人工智慧,即機器的思考和推理就像人的思維一樣。
非類人的人工智慧,即機器產生了和人完全不一樣的知覺和意識,使用和人完全不一樣的推理方式。
弱人工智慧
弱人工智慧觀點認為不可能製造出能真正地推理(Reasoning)和解決問題(Problem_solving)的智能機器,這些機器只不過看起來像是智能的,但是並不真正擁有智能,也不會有自主意識。
主流科研集中在弱人工智慧上,並且一般認為這一研究領域已經取得可觀的成就。強人工智慧的研究則出於停滯不前的狀態下。
對強人工智慧的哲學爭論
「強人工智慧」一詞最初是約翰·羅傑斯·希爾勒針對計算機和其它信息處理機器創造的,其定義為:
「強人工智慧觀點認為計算機不僅是用來研究人的思維的一種工具;相反,只要運行適當的程序,計算機本身就是有思維的。」(J Searle in Minds Brains and Programs. The Behavioral and Brain Sciences, vol. 3, 1980)這是指使計算機從事智能的活動。在這里智能的涵義是多義的、不確定的,象下面所提到的就是其中的例子。利用計算機解決問題時,必須知道明確的程序。可是,人即使在不清楚程序時,根據發現(heu- ristic)法而設法巧妙地解決了問題的情況是不少的。如識別書寫的文字、圖形、聲音等,所謂認識模型就是一例。再有,能力因學習而得到的提高和歸納推理、依據類推而進行的推理等,也是其例。此外,解決的程序雖然是清楚的,但是實行起來需要很長時間,對於這樣的問題,人能在很短的時間內找出相當好的解決方法,如競技的比賽等就是其例。還有,計算機在沒有給予充分的合乎邏輯的正確信息時,就不能理解它的意義,而人在僅是被給予不充分、不正確的信息的情況下,根據適當的補充信息,也能抓住它的意義。自然語言就是例子。用計算機處理自然語言,稱為自然語言處理。
關於強人工智慧的爭論不同於更廣義的一元論和二元論(alism)的爭論。其爭論要點是:如果一台機器的唯一工作原理就是對編碼數據進行轉換,那麼這台機器是不是有思維的?希爾勒認為這是不可能的。他舉了個中文房間的例子來說明,如果機器僅僅是對數據進行轉換,而數據本身是對某些事情的一種編碼表現,那麼在不理解這一編碼和這實際事情之間的對應關系的前提下,機器不可能對其處理的數據有任何理解。基於這一論點,希爾勒認為即使有機器通過了圖靈測試,也不一定說明機器就真的像人一樣有思維和意識。
也有哲學家持不同的觀點。Daniel C. Dennett 在其著作 Consciousness Explained 里認為,人也不過是一台有靈魂的機器而已,為什麼我們認為人可以有智能而普通機器就不能呢?他認為像上述的數據轉換機器是有可能有思維和意識的。
有的哲學家認為如果弱人工智慧是可實現的,那麼強人工智慧也是可實現的。比如Simon Blackburn在其哲學入門教材 Think 里說道,一個人的看起來是「智能」的行動並不能真正說明這個人就真的是智能的。我永遠不可能知道另一個人是否真的像我一樣是智能的,還是說她/他僅僅是看起來是智能的。基於這個論點,既然弱人工智慧認為可以令機器看起來像是智能的,那就不能完全否定這機器是真的有智能的。Blackburn 認為這是一個主觀認定的問題。
需要要指出的是,弱人工智慧並非和強人工智慧完全對立,也就是說,即使強人工智慧是可能的,弱人工智慧仍然是有意義的。至少,今日的計算機能做的事,像算術運算等,在百多年前是被認為很需要智能的。
[編輯本段]【人工智慧簡史】
人工智慧的傳說可以追溯到古埃及,但隨著1941年以來電子計算機的發展,技術已最終可以創造出機器智能,「人工智慧」(Artificial Intelligence)一詞最初是在1956年Dartmouth學會上提出的,從那以後,研究者們發展了眾多理論和原理,人工智慧的概念也隨之擴展,在它還不長的歷史中,人工智慧的發展比預想的要慢,但一直在前進,從40年前出現到現在,已經出現了許多AI程序,並且它們也影響到了其它 技術的發展。
計算機時代
1941年的一項發明使信息存儲和處理的各個方面都發生了革命.這項同時在美國和德國出現的 發明就是電子計算機.第一台計算機要佔用幾間裝空調的大房間,對程序員來說是場惡夢:僅僅為運行一 個程序就要設置成千的線路.1949年改進後的能存儲程序的計算機使得輸入程序變得簡單些,而且計算機 理論的發展產生了計算機科學,並最終促使了人工智慧的出現.計算機這個用電子方式處理數據的發明, 為人工智慧的可能實現提供了一種媒介.
AI的開端
雖然計算機為AI提供了必要的技術基礎,但直到50年代早期人們才注意到人類智能與機器之間 的聯系. Norbert Wiener是最早研究反饋理論的美國人之一.最熟悉的反饋控制的例子是自動調溫器.它 將收集到的房間溫度與希望的溫度比較,並做出反應將加熱器開大或關小,從而控制環境溫度.這項對反饋 迴路的研究重要性在於: Wiener從理論上指出,所有的智能活動都是反饋機制的結果.而反饋機制是有可 能用機器模擬的.這項發現對早期AI的發展影響很大.
1955年末,Newell和Simon做了一個名為"邏輯專家"(Logic Theorist)的程序.這個程序被許多人 認為是第一個AI程序.它將每個問題都表示成一個樹形模型,然後選擇最可能得到正確結論的那一枝來求解 問題."邏輯專家"對公眾和AI研究領域產生的影響使它成為AI發展中一個重要的里程碑.1956年,被認為是 人工智慧之父的John McCarthy組織了一次學會,將許多對機器智能感興趣的專家學者聚集在一起進行了一 個月的討論.他請他們到 Vermont參加 " Dartmouth人工智慧夏季研究會".從那時起,這個領域被命名為 "人工智慧".雖然 Dartmouth學會不是非常成功,但它確實集中了AI的創立者們,並為以後的AI研究奠定了基礎.
Dartmouth會議後的7年中,AI研究開始快速發展.雖然這個領域還沒明確定義,會議中的一些思想 已被重新考慮和使用了. Carnegie Mellon大學和MIT開始組建AI研究中心.研究面臨新的挑戰: 下一步需 要建立能夠更有效解決問題的系統,例如在"邏輯專家"中減少搜索;還有就是建立可以自我學習的系統.
1957年一個新程序,"通用解題機"(GPS)的第一個版本進行了測試.這個程序是由製作"邏輯專家" 的同一個組開發的.GPS擴展了Wiener的反饋原理,可以解決很多常識問題.兩年以後,IBM成立了一個AI研 究組.Herbert Gelerneter花3年時間製作了一個解幾何定理的程序.
當越來越多的程序涌現時,McCarthy正忙於一個AI史上的突破.1958年McCarthy宣布了他的新成 果: LISP語言. LISP到今天還在用."LISP"的意思是"表處理"(LISt Processing),它很快就為大多數AI開發者採納.
1963年MIT從美國政府得到一筆220萬美元的資助,用於研究機器輔助識別.這筆資助來自國防部 高級研究計劃署(ARPA),已保證美國在技術進步上領先於蘇聯.這個計劃吸引了來自全世界的計算機科學家, 加快了AI研究的發展步伐.
大量的程序
以後幾年出現了大量程序.其中一個著名的叫"SHRDLU"."SHRDLU"是"微型世界"項目的一部分,包括 在微型世界(例如只有有限數量的幾何形體)中的研究與編程.在MIT由Marvin Minsky領導的研究人員發現, 面對小規模的對象,計算機程序可以解決空間和邏輯問題.其它如在60年代末出現的"STUDENT"可以解決代數 問題,"SIR"可以理解簡單的英語句子.這些程序的結果對處理語言理解和邏輯有所幫助.
70年代另一個進展是專家系統.專家系統可以預測在一定條件下某種解的概率.由於當時計算機已 有巨大容量,專家系統有可能從數據中得出規律.專家系統的市場應用很廣.十年間,專家系統被用於股市預 測,幫助醫生診斷疾病,以及指示礦工確定礦藏位置等.這一切都因為專家系統存儲規律和信息的能力而成為可能.
70年代許多新方法被用於AI開發,著名的如Minsky的構造理論.另外David Marr提出了機器視覺方 面的新理論,例如,如何通過一副圖像的陰影,形狀,顏色,邊界和紋理等基本信息辨別圖像.通過分析這些信 息,可以推斷出圖像可能是什麼.同時期另一項成果是PROLOGE語言,於1972年提出. 80年代期間,AI前進更為迅速,並更多地進入商業領域.1986年,美國AI相關軟硬體銷售高達4.25億 美元.專家系統因其效用尤受需求.象數字電氣公司這樣的公司用XCON專家系統為VAX大型機編程.杜邦,通用 汽車公司和波音公司也大量依賴專家系統.為滿足計算機專家的需要,一些生產專家系統輔助製作軟體的公 司,如Teknowledge和Intellicorp成立了。為了查找和改正現有專家系統中的錯誤,又有另外一些專家系統被設計出來.
從實驗室到日常生活
人們開始感受到計算機和人工智慧技術的影響.計算機技術不再只屬於實驗室中的一小群研究人員. 個人電腦和眾多技術雜志使計算機技術展現在人們面前.有了象美國人工智慧協會這樣的基金會.因為AI開發 的需要,還出現了一陣研究人員進入私人公司的熱潮。150多所像DEC(它雇了700多員工從事AI研究)這樣的公司共花了10億美元在內部的AI開發組上.
其它一些AI領域也在80年代進入市場.其中一項就是機器視覺. Minsky和Marr的成果現在用到了生產線上的相機和計算機中,進行質量控制.盡管還很簡陋,這些系統已能夠通過黑白區別分辨出物件形狀的不同.到1985年美國有一百多個公司生產機器視覺系統,銷售額共達8千萬美元.
但80年代對AI工業來說也不全是好年景.86-87年對AI系統的需求下降,業界損失了近5億美元.象 Teknowledge和Intellicorp兩家共損失超過6百萬美元,大約占利潤的三分之一巨大的損失迫使許多研究領 導者削減經費.另一個另人失望的是國防部高級研究計劃署支持的所謂"智能卡車".這個項目目的是研製一種能完成許多戰地任務的機器人。由於項目缺陷和成功無望,Pentagon停止了項目的經費.
盡管經歷了這些受挫的事件,AI仍在慢慢恢復發展.新的技術在日本被開發出來,如在美國首創的模糊邏輯,它可以從不確定的條件作出決策;還有神經網路,被視為實現人工智慧的可能途徑.總之,80年代AI被引入了市場,並顯示出實用價值.可以確信,它將是通向21世紀之匙. 人工智慧技術接受檢驗 在"沙漠風暴"行動中軍方的智能設備經受了戰爭的檢驗.人工智慧技術被用於導彈系統和預警顯示以 及其它先進武器.AI技術也進入了家庭.智能電腦的增加吸引了公眾興趣;一些面向蘋果機和IBM兼容機的應用 軟體例如語音和文字識別已可買到;使用模糊邏輯,AI技術簡化了攝像設備.對人工智慧相關技術更大的需求促 使新的進步不斷出現.人工智慧已經並且將繼續不可避免地改變我們的生活.

Ⅲ 機器人控制演算法如何編寫

基於DSP運動控制器的5R工業機器人系統設計 摘要:以所設計的開放式5R關節型工業機器人為研究對象,分析了該機器人的結構設計。該機器人采 用基於工控PC及DSP運動控制器的分布式控制結構,具有開放性強、運算速度快等特點,對其工作原理 進行了詳細的說明。機器人的控制軟體採用基於Windows平台下的VC++實現,具有良好的人機交互 功能,對各組成模塊的作用進行了說明。所設計的開放式5R工業機器人系統,具有較好的實用性。 關鍵詞:開放式;關節型;工業機器人;控制軟體 0引言 工業機器人技術在現代工業生產自動化領域得到 了廣泛的應用,也對工程技術人員提出更高的要求,作 為機械工程及自動化專業的技術人才迫切需要掌握這 一 先進技術。為了能更好地加強技術人員對工業機器 人的技能實踐與技術掌握,需要開放性強的設備來滿 足要求。本文闡述了我們所開發設計的一種5R關節 型工業機器人系統,可以作為通用的工業機器人應用 於現場,也可作為教學培訓設備。 1 5R工業機器人操作機結構設計 關節型工業機器人由2個肩關節和1個肘關節進 行定位,由2個或3個腕關節進行定向,其中一個肩關節 繞鉛直軸旋轉,另一個肩關節實現俯仰,這兩個肩關節 軸線正交。肘關節平行於第二個肩關節軸線。這種構 型的機器人動作靈活、工作空間大,在作業空間內手臂 的干涉最小,結構緊湊,佔地面積小,關節上相對運動部 位容易密封防塵,但運動學復雜、運動學反解困難,控制 時計算量大。在工業用應用是一種通用型機器人¨。 1.1 5R工業機器人操作機結構 所設計的5R關節型機器人具有5個自由度,結構 簡圖如圖1所示。5個自由度分別是:肩部旋轉關節 J1、大臂旋轉關節J2、小臂旋轉關節J3、手腕仰俯運動 關節J4和在旋轉運動關節J5。總體設計思想為:選用 伺服電機(帶制動器)驅動,通過同步帶、輪系等機械機 構進行間接傳動。腕關節上設計有裝配手爪用法蘭, 通過不斷地更換手爪來實現不同的作業任務。 1.2 5R工業機器人參數 表1為設計的5R工業機器人參數。 2 5R工業機器人開放式控制系統 機器人控制技術對其性能的優良起著重大的作用。隨著機器人控制技術的發展,針對結構封閉的機 器人控制器的缺陷,開發「具有開發性結構的模塊化、 標准化機器人控制器」是當前機器人控制器發展的趨 勢]。為提高穩定性、可靠性和抗干擾性,採用「工業 PC+DSP運動控制器」的結構來實現機器人的控制:伺 服系統中伺服級計算機採用以信號處理器(DSP)為核 心的多軸運動控制器,藉助DSP高速信號處理能力與 運算能力,可同時控制多軸運動,實現復雜的控制演算法 並獲得優良的伺服性能。 2.1基於DSP的運動控制器MCT8000F8簡介 深圳摩信科技公司MCT8000F8運動控制器是基 於網路技術的開放式結構高性能DSP8軸運動控制器, 包括主控制板、介面板以及控制軟體等,具有開放式、 高速、高精度、網際在線控制、多軸同步控制、可重構 性、高集成度、高可靠性和安全性等特點,是新一代開 放式結構高性能可編程運動控制器。 圖2為DSP多軸運動控制器硬體原理圖。圖中增 量編碼器的A0(/A0)、B0(/B0)、c0(/CO)信號作為 位置反饋,運動控制器通過四倍頻、加減計數器得到實 際的位置,實際位置信息存在位置寄存器中,計算機可 以通過控制寄存器進行讀取。運動控制卡的目標位置 由計算機通過機器人運動軌跡規劃求得,通過內部計 算得到位置誤差值,再經過加減速控制和數字濾波後, 送到D/A轉換(DAC)、運算放大器、脈寬調制器 (PWM)硬體處理電路,轉化後輸出伺服電機的控制信 號或PWM信號。各個關節可以完成獨立伺服控制,能 夠實現線性插補控制、二軸圓弧插補控制。 2.2機器人控制系統結構及工作原理 基於PC的Windows操作系統,因其友好的人機界 面和廣泛的用戶基礎,而成為基於PC控制器的首選。 採用PC作為機器人控制器的主機系統的優點是:①成 本低;②具有開放性;③完備的軟體開發環境和豐富的 軟體資源;④良好的通訊功能。機器人控制結構上采 用了上、下兩級計算機系統完成對機器人的控制:上級 主控計算機負責整個系統管理,下級則實現對各個關 節的插補運算和伺服控制。這里通過採用一台工業 PC+DSP運動控制卡的結構來實現機器人控制。實驗 結果證明了採用Pc+DSP的計算結構可以充分利用 DSP運算的高速性,滿足機器人控制的實時需求,實現 較高的運動控制性能。 機器人伺服系統框圖如圖3所示。伺服系統由基 於DSP的運動控制器、伺服驅動器、伺服電動機及光電 編碼器組成。伺服系統包含三個反饋子系統:位置環、 速度環、電流環,其工作原理如下:執行元件為交流伺 服電動機,伺服驅動器為速度、電流閉環的功率驅動元 件,光電編碼器擔負著檢測伺服電機速度和位置的任 務。伺服級計算機的主要功能是接受控制級發出的各 種運動控制命令,根據位置給定信號及光電編碼器的 位置反饋信號,分時完成各關節的誤差計算、控制演算法 及D/A轉換、將速度給定信號加至伺服組件的控制端 子,完成對各關節的位置伺服控制。管理級計算機採用 586工控機(或便攜筆記本),主要完成離線編程、模擬、 與控制級通訊、作業管理等功能;控制級計算機採用586 工控機,主要完成用戶程序編輯、用戶程序解釋,向下位 機運動控制器發機器人運動指令、實時監控、輸入輸出 控制(如列印)等。示教盒通過控制級計算機可以獲得 機器人伺服系統中的數據(脈沖、轉角),並用於控制級 計算機控制軟體中實現對機器人的示教及控制。 3 5R工業機器人運動控制軟體設計 5R工業機器人控制軟體採用C++Builder編程, 最終軟體運行在Windows環境下。C++Builder對在 Windows平台下開發應用程序時所涉及到的圖形用戶 界面(GUI)編程具有很強的支持能力,提供了可視化 的開發環境,可以方便調用硬體廠商提供的底層函數, 直接對硬體進行操作,而且生成目標代碼效率高。 所設計的控制軟體為分級式模塊化結構。 管理級主模塊具有離線編程、圖形模擬、資料查詢 及故障診斷等功能,其結構如圖4所示。 (1)離線編程模塊利用計算機圖形學的成果,建立 機器人及其工作環境的模型,利用規劃演算法,通過對圖 形和對象的操作,編制各種運動控制,在離線情況下生 成工作程序。 (2)圖形模擬模塊可預先模擬結果,便於檢查及優 化。 (3)資料查詢模塊可以查閱當日工作及近期工作 記錄、相關資料(生產數量、班次等),並可以列印輸出 存檔。 (4)故障診斷模塊可以實時故障診斷,以代碼形式顯 示出故障類型,並為技術人員排除故障提供幫助信息。 控制級主模塊軟體結構如圖5所示。 (1)復位模塊使得機器人停機時或動作異常時,通 過特定的操作或自動的方式,使機器人回到作業原點。 機器人在作業原點,機構的各運動副所受力矩最小,它 確定了機器人待機的安全位姿。 (2)系統提供兩種示教方法。第一種示教方法即 「下位機+示教盒」的示教方法:示教盒和下位機操作 界面上的手動操作開關分別對應著裝配機器人的各種 動作和功能。通過高、中、低速、點動等速度檔次的選 擇,對機器人進行大致的定位和精確的位置微調。並 存儲期望的運動軌跡上機器人的位置、姿態參數。第 二種方法即離線模擬的示教方法。這種示教方法是在 計算機上建立起機器人作業環境的模型,再在這個模 型的基礎上生成示教數據的一種應用人工智慧的示教 方法。進行示教時使用計算機圖示的方法分析機器人與作業模型的位置關系,也可以通過特定指令指定機 器人的運動位置…。 4結束語 所開發的開放式工業機器人系統具有以下特點: (1)採用分布式二級控制結構,運動控制由基於 DSP的運動控制器M'CT8000F8完成,增加了系統的開 放性,以及運行處理的快速性及可靠性。 (2)考慮到具有良好的通用性,可以作為通用機器 人使用,具有較好的產業化、商品化前景。 (3)計算機輔助軟體採用基於Windows平台的 c++編程,通過調用底層函數可以對硬體進行直接操 作,可視化環境可提供良好的人機交互操作界面。 通過本機器人系統的研究開發,可極大地滿足工 業現場對機器人的開放性要求,進一步提高我國工礦 企業自動化水平。同時,也可作為機器人技術訓練平 台,加強工程人員能力鍛煉。 [參考文獻] [1]馬香峰,等.工業機器人的操作機設計[M].北京:冶金工 業出版社,1996. [2]吳振彪.工業機器人[M].武漢:華中理工大學出版社, 2006. [3]蔡自興.機器人學[M].北京:清華大學出版社,2003. [4]王天然,曲道奎.工業機器人控制系統的開放體系結構 [J].機器人,2002,24(3):256—261. [5]深圳摩信科技有限公司.MCT8000系列控制器使用手冊 [z].深圳:深圳摩信科技有限公司,2001. [6]張興國.環保壓縮機裝配機器人的運動學分析[J].南通 工學院學報,2004(1):32—34,38. [7]張興國.計算機輔助環保壓縮機裝配機器人運動學分析 [J].機械設計與製造,2005(3):98—100, [8]本書編寫委員會編著.程序設計VisualC++6[M].北京: 電子工業出版社,2000. [9]吳斌,等.OpenGL編程實例與技巧[M].北京:人民郵電出 版社,1999. [10]江早.OpenGLVC/VB圖形編程[M】.北京:中國科學技 術出版社,2001. [11]韓軍,等.6R機器人運動學控制實驗系統的研製[J].實 驗室研究與探索,2003(5):103—104.

Ⅳ 機器人路徑規劃演算法是什麼

機器人路徑規劃演算法是 路徑規劃的目的是在給定起點和目標點的空間里規劃出一條從起點到目標點的無碰撞路徑。

移動機器人的路徑規劃,就是移動機器人在所處的環境中尋找到一條從起始點到目標點的無碰路徑,尤其是移動機器人在沒有人為干預的情況下的自主運動,這就需要各種智能演算法融入到機器人自身控制系統中,使得移動機器人自主做出判斷和決策。

Ⅳ 機器人的研究思路

你首先要對機器人所具有的功能做出定義。這決定了你的總體設計思路。
其次,找出該機器人的幾個關鍵技術(通常不超過20%,但要花費80%以上的精力和財力),並決定如果來解決它。
三是,次要技術由誰來完成,是自己研發,還是購買現成的。這些通常要佔80%的工作人員。
四是,先完成原理型樣機,再完成工業型樣機,再完成商品型樣機,再不斷升級,,,,

Ⅵ 機器人控制演算法怎麼編寫

電機控制指令的寫入和狀態讀取對應硬體不同寄存器/地址,用中斷服務程序去負責讀取和寫入,剩下的邏輯運算,用你的c程序去做。

Ⅶ 基於什麼演算法的家庭模擬機器人研究

具體可以和我談。

Ⅷ 本科畢業論文,選了基於slam的機器人演算法研究,請問該怎麼上手

學視覺slam十四講,把一些框架拿過來運行一下,再把框架之中的內容改成自己想要的即可。

機器人爆炸式增長的一個主要問題是不能在不同的機器人平台上重復使用代碼。然而,ROS中的硬體抽象層及其消息服務允許創建可用於許多不同機器人平台的新代碼。而且,ROS提供了一套穩定的機器人軟體包,公認的SLAM評估方法都依賴於機器人社區可用的標准數據集。

所有SLAM的結果都使用佔用網格作為最終輸出,使用地圖相似性的性能指標進行分析。 重點是放在地圖質量,而不是姿態估計誤差,因為映射輸出受到本地化問題的高度影響。

SLAM的典型應用領域:

地圖建模。SLAM可以輔助機器人執行路徑規劃、自主探索、導航等任務。國內的科沃斯、塔米以及最新面世的嵐豹掃地機器人都可以通過用SLAM演算法結合激光雷達或者攝像頭的方法,讓掃地機高效繪制室內地圖,智能分析和規劃掃地環境,從而成功讓自己步入了智能導航的陣列。

國內思嵐科技(SLAMTEC)為這方面技術的主要提供商,SLAMTEC的命名就是取自SLAM的諧音,其主要業務就是研究服務機器人自主定位導航的解決方案。

Ⅸ 機器人學主要包含哪些研究內容

大體上說


兩個方面
,一個是軟體方面,一個是硬體
方面。軟體方面研究更加智能化的演算法,可以使機器人用又更加高的處理事件的能力,硬體方面就是研究生產能精密度更高、更貼近生物肢體的機械部件,

熱點內容
怎麼搭建信令伺服器 發布:2024-11-15 18:48:03 瀏覽:577
如何解鎖安卓手機鎖屏圖 發布:2024-11-15 18:47:48 瀏覽:965
c語言水仙花數編程 發布:2024-11-15 18:45:50 瀏覽:851
安卓快手伴侶懸浮怎麼設置 發布:2024-11-15 18:26:50 瀏覽:523
瀏覽器緩存好的視頻為什麼都刪了 發布:2024-11-15 18:23:06 瀏覽:160
睡眠緩解壓力 發布:2024-11-15 18:20:02 瀏覽:433
什麼是統一存儲 發布:2024-11-15 18:19:02 瀏覽:514
b01智能鎖出廠密碼是什麼 發布:2024-11-15 18:11:01 瀏覽:677
解壓密碼提示在哪裡 發布:2024-11-15 18:09:31 瀏覽:598
db2建表空間時怎麼配置頁大小 發布:2024-11-15 17:58:45 瀏覽:424