去嗎演算法
A. 程序員都應該精通的六種演算法,你會了嗎
對於一名優秀的程序員來說,面對一個項目的需求的時候,一定會在腦海里浮現出最適合解決這個問題的方法是什麼,選對了演算法,就會起到事半功倍的效果,反之,則可能會使程序運行效率低下,還容易出bug。因此,熟悉掌握常用的演算法,是對於一個優秀程序員最基本的要求。
那麼,常用的演算法都有哪些呢?一般來講,在我們日常工作中涉及到的演算法,通常分為以下幾個類型:分治、貪心、迭代、枚舉、回溯、動態規劃。下面我們來一一介紹這幾種演算法。
一、分治演算法
分治演算法,顧名思義,是將一個難以直接解決的大問題,分割成一些規模較小的相同問題,以便各個擊破,分而治之。
分治演算法一般分為三個部分:分解問題、解決問題、合並解。
分治演算法適用於那些問題的規模縮小到一定程度就可以解決、並且各子問題之間相互獨立,求出來的解可以合並為該問題的解的情況。
典型例子比如求解一個無序數組中的最大值,即可以採用分治演算法,示例如下:
def pidAndConquer(arr,leftIndex,rightIndex):
if(rightIndex==leftIndex+1 || rightIndex==leftIndex){
return Math.max(arr[leftIndex],arr[rightIndex]);
}
int mid=(leftIndex+rightIndex)/2;
int leftMax=pidAndConquer(arr,leftIndex,mid);
int rightMax=pidAndConquer(arr,mid,rightIndex);
return Math.max(leftMax,rightMax);
二、貪心演算法
貪心演算法是指在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的僅是在某種意義上的局部最優解。
貪心演算法的基本思路是把問題分成若干個子問題,然後對每個子問題求解,得到子問題的局部最優解,最後再把子問題的最優解合並成原問題的一個解。這里要注意一點就是貪心演算法得到的不一定是全局最優解。這一缺陷導致了貪心演算法的適用范圍較少,更大的用途在於平衡演算法效率和最終結果應用,類似於:反正就走這么多步,肯定給你一個值,至於是不是最優的,那我就管不了了。就好像去菜市場買幾樣菜,可以經過反復比價之後再買,或者是看到有賣的不管三七二十一先買了,總之最終結果是菜能買回來,但搞不好多花了幾塊錢。
典型例子比如部分背包問題:有n個物體,第i個物體的重量為Wi,價值為Vi,在總重量不超過C的情況下讓總價值盡量高。每一個物體可以只取走一部分,價值和重量按比例計算。
貪心策略就是,每次都先拿性價比高的,判斷不超過C。
三、迭代演算法
迭代法也稱輾轉法,是一種不斷用變數的舊值遞推新值的過程。迭代演算法是用計算機解決問題的一種基本方法,它利用計算機運算速度快、適合做重復性操作的特點,讓計算機對一組指令(或一定步驟)進行重復執行,在每次執行這組指令(或這些步驟)時,都從變數的原值推出它的一個新值。最終得到問題的結果。
迭代演算法適用於那些每步輸入參數變數一定,前值可以作為下一步輸入參數的問題。
典型例子比如說,用迭代演算法計算斐波那契數列。
四、枚舉演算法
枚舉演算法是我們在日常中使用到的最多的一個演算法,它的核心思想就是:枚舉所有的可能。枚舉法的本質就是從所有候選答案中去搜索正確地解。
枚舉演算法適用於候選答案數量一定的情況。
典型例子包括雞錢問題,有公雞5,母雞3,三小雞1,求m錢n雞的所有可能解。可以採用一個三重循環將所有情況枚舉出來。代碼如下:
五、回溯演算法
回溯演算法是一個類似枚舉的搜索嘗試過程,主要是在搜索嘗試過程中尋找問題的解,當發現已不滿足求解條件時,就「回溯」返回,嘗試別的路徑。
許多復雜的,規模較大的問題都可以使用回溯法,有「通用解題方法」的美稱。
典型例子是8皇後演算法。在8 8格的國際象棋上擺放八個皇後,使其不能互相攻擊,即任意兩個皇後都不能處於同一行、同一列或同一斜線上,問一共有多少種擺法。
回溯法是求解皇後問題最經典的方法。演算法的思想在於如果一個皇後選定了位置,那麼下一個皇後的位置便被限制住了,下一個皇後需要一直找直到找到安全位置,如果沒有找到,那麼便要回溯到上一個皇後,那麼上一個皇後的位置就要改變,這樣一直遞歸直到所有的情況都被舉出。
六、動態規劃演算法
動態規劃過程是:每次決策依賴於當前狀態,又隨即引起狀態的轉移。一個決策序列就是在變化的狀態中產生出來的,所以,這種多階段最優化決策解決問題的過程就稱為動態規劃。
動態規劃演算法適用於當某階段狀態給定以後,在這階段以後的過程的發展不受這段以前各段狀態的影響,即無後效性的問題。
典型例子比如說背包問題,給定背包容量及物品重量和價值,要求背包裝的物品價值最大。
B. 新手初學java有必要去學習數據結構與演算法嗎
還是有些必要的,大公司筆試面試基本都是靠計算機網路及數據結構與演算法,建議找些基礎的演算法如排序查找等入門就可以了,java新人用不到多深層次的演算法。千鋒教育就有線上免費Java線上公開課。【更系統全面的學習資料,點擊查看】 但是如果是新手小白的話,建議還是報班培訓。因為Java自學起來相對比較難,正確的學習資料的獲取、學習中遇到的問題以及如何合理運用學到的知識等都是自學中常會遇到的問題,而且解決起來都比較花費時間,而培訓機構有系統的教學體系和經驗豐富的講師,而且學習氛圍很濃厚,相對自學而言會更容易一些。千鋒教育就有線上免費Java線上公開課。但是要注意的是Java的培訓機構良莠不齊,很多培訓機構的目的其實就是賺錢,只管教,對學員是否學會並不關心。所以在選擇培訓機構的時候一定要慎重,要選擇口碑良好、師資團隊優秀、教學內容與時俱進的培訓機構。綜上自學Java要一年以上才能達到做項目的程度,而通過培訓的話一般六個月左右就能達到做項目的程度。如果想了解Java更多相關知識,建議到千鋒教育了解一下。千鋒教育目前在18個城市擁有22個校區,年培養優質人才20000餘人,與國內20000餘家企業建立人才輸送合作關系,院校合作超600所。【千鋒IT培訓機構,熱門IT課程試聽名額限時領取】
C. kmp演算法難嗎是什麼級別
KMP演算法是我們數據結構串中最難也是最重要的演算法。難是因為KMP演算法的代碼很優美簡潔干練,但裡麵包含著非常深的思維。真正理解代碼的人可以說對KMP演算法的了解已經相當深入了。而且這個演算法的不少東西的確不容易講懂,很多正規的書本把概念一擺出直接勸退無數人。這篇文章將盡量以最詳細的方式配圖介紹KMP演算法及其改進。文章的開始我先對KMP演算法的三位創始人Knuth,Morris,Pratt致敬,懂得這個演算法的流程後你真的不得不佩服他們的聰明才智。
D. 演算法和開發崗相比,哪個前景更好呢
這兩個崗位的工作內容我都接觸過,目前我帶的大數據團隊中既有演算法工程師也有開發工程師,所以我說一說這兩個崗位的區別,以及未來的發展方向。
演算法設計與演算法實現
通常涉及到演算法的崗位有兩個,分別是演算法設計和演算法實現,現在有不少團隊把這兩個崗位進行合並,做演算法設計的同時也要負責實現。但是也有一些團隊是分開的,做演算法設計的不管實現過程。
演算法崗位門檻是很高的,人才也是稀缺的,總體發展空間很好。還有一點演算法崗位的不可替代性強,如果有機會去演算法崗建議是去的,一般學歷要求在碩士,Java本科大專都是可以的哈。從工作的復雜性上來說,演算法工程師的工作強度還是比較大的,但是演算法工程師的職業周期也比較長。
演算法崗主要是在於如何量化我們的產出,寫代碼做開發非常簡單。你完成了一個任務或者是項目,有了經驗之後,這是在簡歷上實打實的東西。很多演算法工程師最終成長為企業的首席科學家,或者是首席技術官等崗位,可以說演算法工程師的發展前景還是非常不錯的。
開發崗位
軟體團隊的大部分崗位都是開發崗位,有前端開發、後端開發、移動端開發等,可以說大部分程序員做的都是開發崗的工作。
與演算法崗位不同的是,開發崗位人數多,佔比大,而且大部分開發崗位的職業周期都比較短,一般開發崗位在做到一定年齡(比如35歲)之後都會轉型。一部分會轉向項目經理等管理崗位,一部分會轉型做架構師,還有一部分轉型為行業咨詢專家等,當然,也有一部分開發人員轉型為演算法工程師。
一個優秀的開發者不是網上說的那樣吃青春煩的,每一個崗位都會有自己的未來職業發展。開始確實是青春飯,因為大多數人不懂如何提升自己在公司當中的潛在價值,或者不知道如何更加聰明的完成任務。
其實兩個崗位沒有什麼可比性。聊聊這兩個崗位的突出項,開發門檻不很高的,演算法就相對高一些,因為涉及大數據人工智慧等等。現在做演算法的話,5年左右基本會成為專家,給別人講,因為大多數的人是不太懂演算法的,所以會覺得你很牛。收入上來說,演算法的收入是高於開發的。創業的話,大白話就是演算法其實是更容易給別人講故事的,而且相對產品來說,演算法是更容易形成產品的。